Infantile dilated X-linked cardiomyopathy, G4.5 mutations, altered lipids, and ultrastructural malformations of mitochondria in heart, liver, and skeletal muscle.

Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA.
Laboratory Investigation (Impact Factor: 3.83). 04/2002; 82(3):335-44. DOI: 10.1038/labinvest.3780427
Source: PubMed

ABSTRACT Mutations in the Xq28 gene G4.5 lead to dilated cardiomyopathy (DCM). Differential splicing of G4.5 results in a family of proteins called "tafazzins" with homology to acyltransferases. These enzymes assemble fatty acids into membrane lipids. We sequenced G4.5 in two kindreds with X-linked DCM and in two unrelated men, one with idiopathic DCM and the other with DCM of arrhythmogenic right ventricular dysplasia. We examined the ultrastructure of heart, liver, and muscle biopsy specimens in these three DCM types; we used gas chromatography to compare fatty acid composition in heart, liver, and muscle autopsy specimens of two patients of kindred 1 with that of controls. In X-linked DCM, G4.5 had a stop codon (E188X), a nonsense mutation, in kindred 1 and an amino acid substitution (G240R), a missense mutation, in kindred 2. In the two men with isolated DCM, G4.5 was not mutated. Ultrastructural mitochondrial malformations were present in the biopsy tissues of the patients with DCM. Cardiac biopsy specimens of both kindreds with X-linked DCM exhibited greatly enlarged mitochondria with large bundles of stacked, compacted, disarrayed cristae that differed from those of the two types of isolated DCM. Autopsy tissue of patients with X-linked DCM had decreased unsaturated and increased saturated fatty acid concentrations. Seven of 13 published G4.5 missense mutations, including the one presented here, occur in acyltransferase motifs. Impaired acyltransferase function could result in increased fatty acid saturation that would decrease membrane fluidity. Mitochondrial membrane proliferation may be an attempt to compensate for impaired function of acyltransferase. Cardiac ultrastructure separates X-linked DCM with G4.5 mutations from the two types of isolated DCM without G4.5 mutations. Electron microscopy of promptly fixed myocardial biopsy specimens has a role in defining the differential diagnosis of DCM. Mutational analysis of the G4.5 gene also serves this purpose.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Dilated cardiomyopathy (DCM) is one of the leading causes of heart failure (HF) and heart transplant. Mutations in 60 genes have been associated with DCM. Approximately 6% of all DCM cases are caused by mutations in the lamin A/C gene (LMNA). LMNA codes for type-V intermediate filaments that support the structure of the nuclear membrane and are involved in chromatin structure and gene expression. Most LMNA mutations result in striated muscle diseases while the rest affects the adipose tissue, peripheral nervous system, multiple tissues or lead to progeroid syndromes/overlapping syndromes. Patients with LMNA mutations exhibit a variety of cellular and physiological phenotypes. This paper explores the current phenotypes observed in LMNA-caused DCM, the results and implications of the cellular and animal models of DCM and the prevailing theories on the pathogenesis of laminopathies.
    Cardiology journal 05/2014; 21(4). DOI:10.5603/CJ.a2014.0037 · 1.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The human nuclear and mitochondrial genomes co-exist within each cell. While the mitochondrial genome encodes for a limited number of proteins, transfer RNAs, and ribosomal RNAs, the vast majority of mitochondrial proteins are encoded in the nuclear genome. Of the multitude of mitochondrial disorders known to date, only a fifth are maternally inherited. The recent characterization of the mitochondrial proteome therefore serves as an important step toward delineating the nosology of a large spectrum of phenotypically heterogeneous diseases. Following the identification of the first nuclear gene defect to underlie a mitochondrial disorder, a plenitude of genetic variants that provoke mitochondrial pathophysiology have been molecularly elucidated and classified into six categories that impact: (1) oxidative phosphorylation (subunits and assembly factors); (2) mitochondrial DNA maintenance and expression; (3) mitochondrial protein import and assembly; (4) mitochondrial quality control (chaperones and proteases); (5) iron-sulfur cluster homeostasis; and (6) mitochondrial dynamics (fission and fusion). Here, we propose that an additional class of genetic variant be included in the classification schema to acknowledge the role of genetic defects in phospholipid biosynthesis, remodeling, and metabolism in mitochondrial pathophysiology. This seventh class includes a small but notable group of nuclear-encoded proteins whose dysfunction impacts normal mitochondrial phospholipid metabolism. The resulting human disorders present with a diverse array of pathologic consequences that reflect the variety of functions that phospholipids have in mitochondria and highlight the important role of proper membrane homeostasis in mitochondrial biology.
    Frontiers in Genetics 02/2015; 6. DOI:10.3389/fgene.2015.00003
  • [Show abstract] [Hide abstract]
    ABSTRACT: Over the past 25 years a growing number of distinct syndromes/mutations associated with compromised mitochondrial function have been identified that share a common feature: urinary excretion of 3-methylglutaconic acid (3MGA). In the leucine degradation pathway, carboxylation of 3-methylcrotonyl CoA leads to formation of 3-methylglutaconyl CoA while 3-methylglutaconyl CoA hydratase converts this metabolite to 3-hydroxy-3-methylglutaryl CoA (HMG CoA). In "primary" 3MGA-uria, mutations in the hydratase are directly responsible for the accumulation of 3MGA. On the other hand, in all "secondary" 3MGA-urias, no defect in leucine catabolism exists and the metabolic origin of 3MGA is unknown. Herein, a path to 3MGA from mitochondrial acetyl CoA is proposed. The pathway is initiated when syndrome-associated mutations/DNA deletions result in decreased Krebs cycle flux. When this occurs, acetoacetyl CoA thiolase condenses two acetyl CoA into acetoacetyl CoA plus CoASH. Subsequently, HMG CoA synthase 2 converts acetoacetyl CoA and acetyl CoA to HMG CoA. Under syndrome-specific metabolic conditions, 3-methylglutaconyl CoA hydratase converts HMG CoA into 3-methylglutaconyl CoA in a reverse reaction of the leucine degradation pathway. This metabolite fails to proceed further up the leucine degradation pathway owing to the kinetic properties of 3-methylcrotonyl CoA carboxylase. Instead, hydrolysis of the CoA moiety of 3-methylglutaconyl CoA generates 3MGA, which appears in urine. If experimentally confirmed, this pathway provides an explanation for the occurrence of 3MGA in multiple disorders associated with compromised mitochondrial function.
    Journal of Inherited Metabolic Disease 01/2014; DOI:10.1007/s10545-013-9669-0 · 4.14 Impact Factor

Full-text (2 Sources)

Available from
May 22, 2014