Amino-terminal control of transgenic protein expression levels in Toxoplasma gondii.

Department of Biology, University of Pennsylvania, 415 South University Avenue, Philadelphia, PA 19104-6018, USA.
Molecular and Biochemical Parasitology (Impact Factor: 2.73). 05/2002; 120(2):285-9. DOI: 10.1016/S0166-6851(02)00014-2
Source: PubMed

ABSTRACT Comparing the steady-state expression levels of recombinant proteins in Toxoplasma gondii parasites indicates considerable variability, and this has sometimes caused difficulties in the engineering of transgenic parasites. Anecdotal observations suggested that alteration of the N-terminus, e.g. by engineering as a fusion protein, permits stable expression of various transgenes that were previously difficult to express in their native form. We have exploited the sensitivity and quantitative nature of fire-fly luciferase (LUC) to examine expression levels in further detail. Fusing the 26 N-terminal residues derived from chloramphenicol acetyl transferase (DeltaCAT) to LUC permits efficient transient or stable luciferase expression in transgenic parasite tachyzoites, providing a useful reporter for studies in T. gondii. Site-directed mutagenesis was used to alter the second codon of DeltaCAT-LUC to encode all 20 possible amino acids, and these constructs showed that changes in the second amino acid can have dramatic effects on luciferase activity, with Ala, Glu, and Asp codons yielding the highest expression levels. Similar results were observed for the expression of both GFP and the T. gondii HXGPRT gene, demonstrating the generality of this effect.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: New drugs are needed to treat toxoplasmosis. Toxoplasma gondii calcium-dependent protein kinases (TgCDPKs) are attractive targets because they are absent in mammals. We show that TgCDPK1 is inhibited by low nanomolar levels of bumped kinase inhibitors (BKIs), compounds inactive against mammalian kinases. Cocrystal structures of TgCDPK1 with BKIs confirm that the structural basis for selectivity is due to the unique glycine gatekeeper residue in the ATP-binding site. We show that BKIs interfere with an early step in T. gondii infection of human cells in culture. Furthermore, we show that TgCDPK1 is the in vivo target of BKIs because T. gondii expressing a glycine to methionine gatekeeper mutant enzyme show significantly decreased sensitivity to BKIs. Thus, design of selective TgCDPK1 inhibitors with low host toxicity may be achievable.
    Nature Structural & Molecular Biology 05/2010; 17(5):602-7. · 11.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Apicomplexan parasites (including Plasmodium spp. and Toxoplasma gondii) employ a four-carbon pathway for de novo heme biosynthesis, but this pathway is distinct from the animal/fungal C4 pathway in that it is distributed between three compartments: the mitochondrion, cytosol, and apicoplast, a plastid acquired by secondary endosymbiosis of an alga. Parasite porphobilinogen synthase (PBGS) resides within the apicoplast, and phylogenetic analysis indicates a plant origin. The PBGS family exhibits a complex use of metal ions (Zn(2+) and Mg(2+)) and oligomeric states (dimers, hexamers, and octamers). Recombinant T. gondii PBGS (TgPBGS) was purified as a stable approximately 320-kDa octamer, and low levels of dimers but no hexamers were also observed. The enzyme displays a broad activity peak (pH 7-8.5), with a K(m) for aminolevulinic acid of approximately 150 microM and specific activity of approximately 24 micromol of porphobilinogen/mg of protein/h. Like the plant enzyme, TgPBGS responds to Mg(2+) but not Zn(2+) and shows two Mg(2+) affinities, interpreted as tight binding at both the active and allosteric sites. Unlike other Mg(2+)-binding PBGS, however, metal ions are not required for TgPBGS octamer stability. A mutant enzyme lacking the C-terminal 13 amino acids distinguishing parasite PBGS from plant and animal enzymes purified as a dimer, suggesting that the C terminus is required for octamer stability. Parasite heme biosynthesis is inhibited (and parasites are killed) by succinylacetone, an active site-directed suicide substrate. The distinct phylogenetic, enzymatic, and structural features of apicomplexan PBGS offer scope for developing selective inhibitors of the parasite enzyme based on its quaternary structure characteristics.
    Journal of Biological Chemistry 05/2010; 285(29):22122-31. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the more than 100 years since its discovery, our knowledge of Toxoplasma biology has improved enormously. The evolution of molecular biology, immunology and genomics has had profound influences on our understanding of this ubiquitous bug. However, it could be argued that in science today the adage "seeing is believing" has never been truer. Images are highly influential and in the time since the first description of T. gondii, advances in microscopy and imaging technology have been and continue to be dramatic. In this review we recount the discovery of T. gondii and the contribution of imaging techniques to elucidating its life cycle, biology and the immune response of its host.
    Parasites & Vectors 11/2013; 6(1):334. · 3.25 Impact Factor