Sigma(2)-receptor regulation of dopamine transporter via activation of protein kinase C.

Department of Pharmacology, The George Washington University Medical Center, Washington, DC 20037, USA.
Journal of Pharmacology and Experimental Therapeutics (Impact Factor: 3.89). 05/2002; 301(1):306-14. DOI: 10.1124/jpet.301.1.306
Source: PubMed

ABSTRACT The elucidation of the mechanisms underlying sigma(2)-receptor activation and signal transduction is crucial to the understanding of sigma(2)-receptor function. Previous studies in our laboratory have demonstrated sigma(2)-receptor-mediated regulation of the dopamine transporter (DAT) as measured by amphetamine-stimulated release of [(3)H]dopamine (DA) from both rat striatal slices and PC12 cells. The regulation of the DAT in the PC12 cell model was dependent upon activation of Ca(2+)/calmodulin-dependent kinase II. We have now studied the second messenger systems involved in sigma(2)-receptor-mediated regulation of amphetamine-stimulated [(3)H]DA release in rat striatal slices, including Ca(2+)/calmodulin-dependent kinase II, protein kinase C, and sources of calcium required for the enhancement of release produced by sigma(2)-receptor activation. The Ca(2+)/calmodulin-dependent kinase II inhibitors 1-[N,O-bis-(5-isoquionolinesulfonyl)]-N-methyl-L-tyrosyl-4-phenylpiperazine and N-[2-[[[3-(4'-chlorophenyl)-2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4'-methoxy-benzenesulfonamide phosphate did not significantly affect the (+)-pentazocine-mediated enhancement of amphetamine-stimulated [(3)H]DA release. However, we found that an inhibitor of protein kinase C, 3-[1-[3-(dimethylamino)propyl]-1H-indol-3-yl)-1H-pyrrole-2,5-dione, blocks the (+)-pentazocine-mediated enhancement in rat striatal slices. The protein kinase C activator phorbol 12-myristate 13-acetate, but not the inactive isophorbol 4 alpha,9 alpha,12 alpha,13 alpha,20-pentahydroxytiglia-1,6-dien-3-one, enhanced the amphetamine-stimulated [(3)H]DA release comparable to the enhancement seen by (+)-pentazocine alone. Additionally, the L-type voltage-dependent calcium channel inhibitor nitrendipine or prior treatment with thapsigargin, but not the N-type voltage-dependent calcium channel omega-conotoxin MVIIA, attenuated the (+)-pentazocine-mediated enhancement. Together, these data suggest that activation of sigma(2)-receptors results in the regulation of DAT activity via a calcium- and protein kinase C-dependent signaling mechanism.