Altered cardiovascular responses in mice lacking the M(1) muscarinic acetylcholine receptor

Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA.
Journal of Pharmacology and Experimental Therapeutics (Impact Factor: 3.97). 05/2002; 301(1):129-37.
Source: PubMed


Although the M(2) muscarinic acetylcholine receptor (mAChR) is the predominant functional mAChR subtype in the heart, some responses of the cardiovascular system to acetylcholine (ACh) may be mediated by other mAChR subtypes. The potential effect of M(1) mAChR on heart function was investigated using M(1) knockout (M(1)-KO) mice. In vivo cardiodynamic analysis showed that basal values of heart rate (HR), developed left ventricular pressure (DLVP), left ventricular dP/dt(max) (LV dP/dt(max)), and mean blood pressure (MBP) were similar between wild-type (WT) and M(1)-KO mice. Injection of the putative M(1)-selective agonist 4-(m-chlorophenyl-carbamoyloxy)-2-butynyltrimethylammonium (McN-A-343) produced an increase in LV dP/dt(max), DLVP, HR, and MBP in WT mice but did not affect hemodynamic function in the M(1)-KO mice. The stimulatory effect of McN-A-343 in WT mice was blocked by pretreatment with propranolol, indicating that stimulation of the M(1) mAChRs on sympathetic postganglionic neurons evoked release of catecholamines. Intravenous injection of ACh in both WT and M(1)-KO mice caused atrioventricular conduction block, without a significant change in the frequency of atrial depolarization, or atrial fibrillation. Immunoprecipitation and reverse transcriptase-polymerase chain reaction failed to detect the expression of M(1) mAChR in cardiac tissue from WT mice. The carbachol-induced increase of phospholipase C activity in cardiac tissues was not different between WT and M(1)-KO mice. These results demonstrate that 1) activation of M(1) mAChR subtype on sympathetic postganglionic cells results in catecholamine-mediated cardiac stimulation, 2) M(1) mAChR is not expressed in mouse heart, and 3) administration of ACh to mice induces arrhythmia.

5 Reads
  • Source
    • "When AVN cells were pre-treated with the M2 receptor inhibitor AFDX-116 (1 lM), the response to 1 lM ACh was largely abolished (Fig. 1C), demonstrating M2 receptor activation to be responsible for generation of AVN I KACh . This is concordant with: (i) prior work on anaesthetised dogs in which AFDX-116 inhibited chronotropic and dromotropic responses to intracardiac vagal nerve stimulation [29]; (ii) the persistence of AV conduction block in response to intravenous ACh in mice deficient in M1-receptors [30], and (iii) presumed M2-receptor mediated conduction effects of propofol on guinea-pig hearts [31]. SAN I KACh is sensitive to the bee venom toxin tertiapin [32] [33]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The atrioventricular node (AVN) is a vital component of the pacemaker-conduction system of the heart, co-ordinating conduction of electrical excitation from cardiac atria to ventricles and acting as a secondary pacemaker. The electrical behaviour of the AVN is modulated by vagal activity via activation of muscarinic potassium current, IKACh. However, it is not yet known if this response exhibits 'fade' or desensitization in the AVN, as established for the heart's primary pacemaker--the sinoatrial node. In this study, acute activation of IKACh in rabbit single AVN cells was investigated using whole-cell patch clamp at 37 °C. 0.1-1 μM acetylcholine (ACh) rapidly activated a robust IKACh in AVN myocytes during a descending voltage-ramp protocol. This response was inhibited by tertiapin-Q (TQ; 300 nM) and by the M2 muscarinic ACh receptor antagonist AFDX-116 (1 μM). During sustained ACh exposure the elicited IKACh exhibited bi-exponential fade (τf of 2.0 s and τs 76.9 s at -120 mV; 1 μM ACh). 10 nM ET-1 elicited a current similar to IKACh, which faded with a mono-exponential time-course (τ of 52.6 s at -120 mV). When ET-1 was applied following ACh, the ET-1 activated response was greatly attenuated, demonstrating that ACh could desensitize the response to ET-1. For neither ACh nor ET-1 was the rate of current fade dependent upon the initial response magnitude, which is inconsistent with K+ flux mediated changes in electrochemical driving force as the underlying mechanism. Collectively, these findings demonstrate that TQ sensitive inwardly rectifying K+ current in cardiac AVN cells, elicited by M2 muscarinic receptor or ET-1 receptor activation, exhibits fade due to rapid desensitization.
    Biochemical and Biophysical Research Communications 06/2012; 423(3):496-502. DOI:10.1016/j.bbrc.2012.05.148 · 2.30 Impact Factor
  • Source
    • "Amongst these disorders are sick sinus syndrome and AV block (Fu et al., 2007). Excessive vagal stimulation leads directly to AV block, an effect that is primarily dependent on increased GIRK current in mice (Drici et al., 2000; Hardouin et al., 2002) but can also result from inhibition of ICa,L by maternal auto-antibodies in cases of congenital heart block in humans (Garcia et al., 1994). Activation of RGS6 or RGS4 activity in heart would be expected to dampen parasympathetic stimulation and relieve these symptoms. "
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been nearly a century since Otto Loewi discovered that acetylcholine (ACh) release from the vagus produces bradycardia and reduced cardiac contractility. It is now known that parasympathetic control of the heart is mediated by ACh stimulation of Gi/o-coupled muscarinic M2 receptors, which directly activate G protein-coupled inwardly rectifying potassium (GIRK) channels via Gβγ resulting in membrane hyperpolarization and inhibition of action potential (AP) firing. However, expression of M2R-GIRK signaling components in heterologous systems failed to recapitulate native channel gating kinetics. The missing link was identified with the discovery of RGS proteins, which act as GTPase-activating proteins to accelerate the intrinsic GTPase activity of Gα resulting in termination of Gα- and Gβγ-mediated signaling to downstream effectors. Studies in mice expressing an RGS-insensitive Gαi2 mutant (G184S) implicated endogenous RGS proteins as key regulators of parasympathetic signaling in heart. Recently, two RGS proteins have been identified as critical regulators of M2R signaling in heart. RGS6 exhibits a uniquely robust expression in heart, especially in sinoatrial (SAN) and atrioventricular nodal (AVN) regions. Mice lacking RGS6 exhibit increased bradycardia and inhibition of SAN AP firing in response to CCh as well as a loss of rapid activation and deactivation kinetics and current desensitization for ACh-induced GIRK current (IKACh). Similar findings were observed in mice lacking RGS4. Thus, dysregulation in RGS protein expression or function may contribute to pathologies involving aberrant electrical activity in cardiac pacemaker cells. Moreover, RGS6 expression was found to be up-regulated in heart under certain pathological conditions, including doxorubicin treatment, which is known to cause life-threatening cardiotoxicity and atrial fibrillation in cancer patients. On the other hand, increased vagal tone may be cardioprotective in heart failure wher
    Frontiers in Physiology 04/2012; 3:95. DOI:10.3389/fphys.2012.00095 · 3.53 Impact Factor
  • Source

Show more

Similar Publications