Article

T cell developmental defects in 'viable motheaten' mice deficient in SHP-1 protein-tyrosine phosphatase. Developmental defects are corrected in vitro in the presence of normal hematopoietic-origin stromal cells and in vivo by exogenous IL-7.

The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
Journal of Autoimmunity (Impact Factor: 8.15). 04/2002; 18(2):119-30. DOI: 10.1006/jaut.2001.0571
Source: PubMed

ABSTRACT Defects in the gene that encodes SHP-1 protein tyrosine phosphatase result in multiple hematopoietic abnormalities and generalized autoimmunity in viable motheaten (me(v)) mice. These mice also exhibit early thymic involution and abnormalities in T cell development. Here, we describe the use of fetal thymic organ culture (FTOC) and bone marrow adoptive transfer to study the effects of SHP-1 deficiency on thymocyte development. Chimeric FTOC established with normal bone marrow placed onto deoxyguanosine-treated fetal thymic lobes or onto scid fetal thymic lobes generated T cells. Bone marrow from SHP-1-deficient me(v)/ me(v) mice generated decreased numbers of T cells in chimeric FTOC established using deoxyguanosine-treated thymi but generated normal numbers in chimeric FTOC established using scid thymi. However, scid fetal thymi seeded with me(v)/ me(v) bone marrow also exhibited morphological abnormalities and contained elevated numbers of macrophages. Addition of IL-7 to me(v)/ me(v) bone marrow-seeded scid FTOC led to increased cell numbers, particularly of macrophages. Intrathymic injection of IL-7 partially restored the ability of progenitor cells in me(v)/ me(v) bone marrow to populate the thymus of adoptive recipients. We conclude that abnormal T cell development in me(v)/ me(v) mice may in part be due to defects in the ability of bone marrow-derived accessory cells to provide bioavailable IL-7 to developing thymocytes.

0 Bookmarks
 · 
58 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Involution of the thymus and alterations in the development of thymocytes are the most prominent features of age-related immune senescence. We have carried out a comparative analysis of thymocyte and stroma in rapid thymic involution DBA/2 (D2) strain of mice compared with slow involution C57BL/6 (B6) strain of mice. Analysis of mice at 15 months of age suggested an age-related decrease in the thymocyte cell count, a block in the development of T cells and cortical involution in D2 mice compared with 3-month-old mice. TUNEL (terminal-deoxynucleotidyl-transferase-mediated dUTP-digoxigenin nick end labelling) staining and fluorescence-activated cell sorter (FACS) analysis showed that there was a significant increase in apoptotic cells in the cortex region of thymus in 15-month-old D2 mice compared with the same aged B6 mice. The thymocyte proliferation rate, as assessed by bromodeoxyuridine (BrdU) staining and [3H]-thymidine incorporation assay, was lower in 3-month-old D2 mice compared with the same age B6 mice. Immunohistochemical staining showed that the arrangement of MTS (mouse thymus stromal)-10+ epithelial cells and MTS-16+ connective tissue staining pattern had become disorganized in 15-month-old D2 mice but remained intact in B6 mice of the same age. These results suggest that, in D2 mice, both the thymocytes and stromal cells exhibit age-related defects, and that the genetic background of mice plays an important role in determining age-related alterations in thymic involution.
    Scandinavian Journal of Immunology 06/2003; 57(5):410-22. · 2.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SOCS1-/- mice die prematurely of increased interferon-gamma (IFNgamma) signaling with severe thymic atrophy and accelerated maturation of T cells. However, it was unclear whether the thymic defects were caused by SOCS1 deficiency or by increased IFNgamma signaling. Using SOCS1-/- IFNgamma-/- mice, we show in this study that SOCS1 deficiency skews thymocyte development toward CD8 lineage independently of IFNgamma. Fetal thymic organ cultures and intrathymic transfer of CD4-CD8- precursors into Rag1-/- mice show that the lineage skewing in SOCS1-/- mice is a T-cell autonomous defect. Interestingly, SOCS1 is not required for attenuating interleukin-7 (IL-7) signaling at the CD4-CD8- stage but is essential for regulating IL-15 and IL-2 signaling in CD8+ thymocytes. IL-15 selectively stimulates SOCS1-/- CD8+ thymocytes, inducing sustained signal transducer and activator of transcription 5 (STAT5) phosphorylation and massive proliferation. IL-15 also strongly up-regulates Bcl-xL and CD44 in CD8+ thymocytes lacking SOCS1. The SOCS1 gene is induced in CD4+ thymocytes by gammac cytokines, whereas CD8+ thymocytes constitutively express SOCS1 mRNA even in the absence of cytokine stimulation. Because many different cell types express IL-15, our results strongly suggest that SOCS1 functions as an indispensable attenuator of IL-15 receptor signaling in developing CD8+ thymocytes.
    Blood 01/2004; 102(12):4115-22. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of the tyrosine phosphatase SHP-1 in the hematopoietic system has been well studied; however, its role in the central nervous system (CNS) response to injury is not well understood. Previous studies in our laboratory have demonstrated increased immunoreactivity for SHP-1 in a subset of reactive astrocytes that do not appear to enter the cell cycle following deafferentation of the chicken auditory brainstem. In order to determine whether mammalian astrocytes also upregulate SHP-1 immunoreactivity following CNS injury, a mouse model of focal cerebral ischemia was utilized to study SHP-1 expression. The brains of 3-week-old mice were analyzed at four time points following permanent middle cerebral artery occlusion (MCAO): 1, 3, 7, and 14 days. Our results demonstrate consistent infarct volumes within surgical groups, and infarct volumes decrease as a function of time from 1 day (maximum infarct volume) to 14 days (minimum infarct volume) post-MCAO. In addition, SHP-1 protein levels are upregulated following cerebral ischemia and this increase peaks at 7 days post-MCAO. Analysis of confocal images further reveals that immunoreactivity for SHP-1 occurs predominantly in GFAP+ reactive astrocytes, although a small percentage of F4-80+ microglia are also double labeled for SHP-1 at early times post-MCAO. These SHP-1+ reactive astrocytes do not appear to enter the cell cycle (as defined by PCNA immunoreactivity), confirming our previous studies in the avian auditory brainstem. These results suggest that SHP-1 plays an important role in the regulation of glial activation and proliferation in the ischemic CNS.
    Brain Research 07/2003; 974(1-2):88-98. · 2.88 Impact Factor