Direct evidence for base-mediated decomposition of alkyl hydroperoxides (ROOH) in the gas phase

Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA.
Journal of the American Chemical Society (Impact Factor: 11.44). 05/2002; 124(13):3196-7. DOI: 10.1021/ja017658c
Source: PubMed

ABSTRACT The reaction of F(-) with CH(3)OOH has been studied in the gas phase using a tandem flowing afterglow-selected ion flow tube apparatus. The reaction is rapid (k = 1.23 x 10(-9) cm(3) s(-1), 49% efficiency), and formation of HO(-) + CH(2)O + HF is the major reaction channel observed (85%). Isotopic labeling, reactions of F(-) with larger alkyl hydroperoxides, and computational studies demonstrate that the major product ion, HO(-), is formed via a concerted elimination mechanism that appears to be general to all alkyl hydroperoxides possessing an alpha-hydrogen. This mechanism represents a base-mediated decomposition of alkyl hydroperoxides in the gas phase that may have important implications for solution and biochemical reactions. The reverse reaction, CH(3)OO(-) + HF is also efficient (k = 2.43 x 10(-9) cm(3) s(-1)). The major product ensemble HO(-) + CH(2)O + HF (81%) is identical to that of the forward reaction, and represents a novel neutral-catalyzed decomposition of the anion.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Lipoxygenases (LOXs) are iron- or manganese-containing oxidative enzymes found in plants, animals, bacteria and fungi. LOXs catalyze the oxidation of polyunsaturated fatty acids to the corresponding highly reactive hydroperoxides. Production of hydroperoxides by LOX can be exploited in different applications such as in bleaching of colored components, modification of lipids originating from different raw materials, production of lipid derived chemicals and production of aroma compounds. Most application research has been carried out using soybean LOX, but currently the use of microbial LOXs has also been reported. Development of LOX composition with high activity by heterologous expression in suitable production hosts would enable full exploitation of the potential of LOX derived reactions in different applications. Here, we review the biological role of LOXs, their heterologous production, as well as potential use in different applications. LOXs may fulfill an important role in the design of processes that are far more environmental friendly than currently used chemical reactions. Difficulties in screening for the optimal enzymes and producing LOX enzymes in sufficient amounts prevent large-scale application so far. With this review, we summarize current knowledge of LOX enzymes and the way in which they can be produced and applied.
    Critical Reviews in Biotechnology 02/2015; DOI:10.3109/07388551.2015.1004520 · 7.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Classical chemical dynamics simulations of post-transition state dynamics are reviewed. Most of the simulations involve direct dynamics for which the potential energy and gradient are obtained directly from an electronic structure theory. The chemical reaction attributes and chemical systems presented are product energy partitioning for Cl- ··· CH3Br --> ClCH3 + Br- and C2H5F --> C2H4 + HF dissociation, non-RRKM dynamics for cyclopropane stereomutation and the Cl- ··· CH3Cl complexes mediating the Cl- + CH3Cl SN2 nucleophilic substitution reaction, and non-IRC dynamics for the OH- + CH3F and F- + CH3OOH chemical reactions. These studies illustrate the important role of chemical dynamics simulations in understanding atomic-level reaction dynamics and interpreting experiments. They also show that widely used paradigms and model theories for interpreting reaction kinetics and dynamics are often inaccurate and are not applicable.
    International Reviews in Physical Chemistry 07/2008; 27(3):361-403. DOI:10.1080/01442350802045446 · 4.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In classical and quasiclassical trajectory chemical dynamics simulations, the atomistic dynamics of collisions, chemical reactions, and energy transfer are studied by solving the classical equations of motion. These equations require the potential energy and its gradient for the chemical system under study, and they may be obtained directly from an electronic structure theory. This article reviews such direct dynamics simulations. The accuracy of classical chemical dynamics is considered, with simulations highlighted for the F− + CH3OOH reaction and of energy transfer in collisions of CO2 with a perfluorinated self-assembled monolayer (F-SAM) surface. Procedures for interfacing chemical dynamics and electronic structure theory computer codes are discussed. A Hessian-based predictor–corrector algorithm and high-accuracy Hessian updating algorithm, for enhancing the efficiency of direct dynamics simulations, are described. In these simulations, an ensemble of trajectories is calculated which represents the experimental and chemical system under study. Algorithms are described for selecting the appropriate initial conditions for bimolecular and unimolecular reactions, gas-surface collisions, and initializing trajectories at transition states and conical intersections. Illustrative direct dynamics simulations are presented for the Cl− + CH3I SN2 reaction, unimolecular decomposition of the epoxy resin constituent CH3NHCHCHCH3 versus temperature, collisions and reactions of N-protonated diglycine with a F-SAM surface that has a reactive head group, and the product energy partitioning for the post-transition state dynamics of C2H5F → HF + C2H4 dissociation. © 2012 John Wiley & Sons, Ltd.
    05/2013; 3(3). DOI:10.1002/wcms.1132


Available from