Phospholipase A2 from Trypanosoma brucei gambiense and Trypanosoma brucei brucei: inhibition by organotins.

Protozoology Department, Institute of Tropical Medicine, Nagasaki University, Japan.
Journal of enzyme inhibition 12/2001; 16(5):433-41. DOI: 10.1080/14756360109162392
Source: PubMed

ABSTRACT Activity and kinetics of phospholipase A2 (PLA2) from Trypanosoma brucei gambiense (Wellcome strain) and Trypanosoma brucei brucei (GUTat 3.1) were examined using two different fluorescent substrates. The activity in the supernatants of sonicated parasites was Ca2+-independent, strongly stimulated by Triton X-100 with optimum activity at 37 degrees C and pH 6.5-8.5. To encourage a possible interaction between the parasite enzyme and organotin compounds, fatty acid derivatives of dibutyltin dichloride were synthesized and evaluated as potential inhibitors of PLA2. The enzyme from the two-trypanosome species differ with respect to kinetic parameters and are noncompetitively inhibited by the organotin compounds. The Michaelis constant (KM) for PLA2 from T. b. brucei is 63.87 and 30.90 microM while for T. b. gambiense it is 119.64 and 32.91 microM for the substrates 1,2-bis-(1-pyrenebutanoyl)-sn-glycero-3-phosphocholine (PBGPC) and 2-(12-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)dodecanoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine (NBDC12-HPC), respectively.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Chagas disease is caused by Trypanosoma cruzi, a protozoan parasite. Chagas disease remains a serious health problem in large parts of Mexico and Central and South America, where it is a major cause of morbidity and mortality. This disease is being increasingly recognized in non-endemic regions due to immigration. Heart disease develops in 10-30% of infected individuals. It is increasingly clear that parasite- and host-derived bioactive lipids potently modulate disease progression. Many of the changes that occur during acute and chronic Chagas disease can be accounted for by the effects of arachidonic acid (AA)-derived lipids such as leukotrienes, lipoxins, H(P)ETEs, prostaglandins (PGs) and thromboxane. During the course of infection with T. cruzi, changes in circulating levels of AA metabolites are observed. Antagonism of PG synthesis with cyclooxygenase (COX) inhibitors has both beneficial and adverse effects. Treatment with COX inhibitors during acute infection may result in increased parasite load and mortality. However, treatment instituted during chronic infection may be beneficial with no increase in mortality and substantial improvement with cardiac function. Recently, T. cruzi infection of mice deficient in AA biosynthetic enzymes for various pathways has yielded more insightful data than pharmacological inhibition and has highlighted the potential deleterious effects of inhibitors due to "off-target" actions. Using COX-1 null mice, it was observed that parasite biosynthesis is dependent upon host metabolism, that the majority of TXA(2) liberated during T. cruzi infection is derived from the parasite and that this molecule may act as a quorum sensor to control parasite growth/differentiation. Thus, eicosanoids present during acute infection may act as immunomodulators aiding the transition to, and maintenance of, the chronic stage of the disease. It is also likely that the same mediators that initially function to ensure host survival may later contribute to cardiovascular damage. Collectively, the eicosanoids represent a new series of targets for therapy in Chagas disease with defined potential therapeutic windows in which to apply these agents for greatest effect. A deeper understanding of the mechanism of action of non-steroidal anti-inflammatory drugs may provide clues to the differences between host responses in acute and chronic T. cruzi infection.
    Advances in Parasitology 01/2011; 76:1-31. DOI:10.1016/B978-0-12-385895-5.00001-3 · 4.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Trypanosoma cruzi infection in humans and experimental animals causes Chagas disease which is often accompanied by myocarditis, cardiomyopathy, and vasculopathy. T. cruzi-derived thromboxane A(2) (TXA(2)) modulates vasculopathy and other pathophysiological features of Chagasic cardiomyopathy. Here, we provide evidence that epimastigotes, trypomastigotes, and amastigotes of T. cruzi (Brazil and Tulahuen strains) express a biologically active prostanoid receptor (PR) that is responsive to TXA(2) mimetics, e.g. IBOP. This putative receptor, TcPR, is mainly localized in the flagellar membrane of the parasites and shows a similar glycosylation pattern to that of bona fide thromboxane prostanoid (TP) receptors obtained from human platelets. Furthermore, TXA(2)-PR signal transduction activates T. cruzi-specific MAPK pathways. While mammalian TP is a G-protein coupled receptor (GPCR); T. cruzi genome sequencing has not demonstrated any confirmed GPCRs in these parasites. Based on this genome sequencing it is likely that TcPR is unique in these protists with no counterpart in mammals. TXA(2) is a potent vasoconstrictor which contributes to the pathogenesis of Chagasic cardiovascular disease. It may, however, also control parasite differentiation and proliferation in the infected host allowing the infection to progress to a chronic state.
    Parasitology Research 02/2013; 112(4). DOI:10.1007/s00436-012-3271-5 · 2.33 Impact Factor