Article

Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4.

Amgen Institute, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, 620 University Avenue, Suite 706, Toronto, Ontario M5G 2C1, Canada.
Nature (Impact Factor: 42.35). 05/2002; 416(6882):750-6. DOI: 10.1038/nature736
Source: PubMed

ABSTRACT Toll-like receptors (TLRs), which recognize pathogen-associated molecular patterns, and members of the pro-inflammatory interleukin-1 receptor (IL-1R) family, share homologies in their cytoplasmic domains called Toll/IL-1R/plant R gene homology (TIR) domains. Intracellular signalling mechanisms mediated by TIRs are similar, with MyD88 (refs 5-8) and TRAF6 (refs 9, 10) having critical roles. Signal transduction between MyD88 and TRAF6 is known to involve the serine-threonine kinase IL-1 receptor-associated kinase 1 (IRAK-1) and two homologous proteins, IRAK-2 (ref. 12) and IRAK-M. However, the physiological functions of the IRAK molecules remain unclear, and gene-targeting studies have shown that IRAK-1 is only partially required for IL-1R and TLR signalling. Here we show by gene-targeting that IRAK-4, an IRAK molecule closely related to the Drosophila Pelle protein, is indispensable for the responses of animals and cultured cells to IL-1 and ligands that stimulate various TLRs. IRAK-4-deficient animals are completely resistant to a lethal dose of lipopolysaccharide (LPS). In addition, animals lacking IRAK-4 are severely impaired in their responses to viral and bacterial challenges. Our results indicate that IRAK-4 has an essential role in innate immunity.

2 Followers
 · 
145 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glucocorticoids are among the most commonly used anti-inflammatory agents. Despite the enormous efforts in elucidating the glucocorticoid-mediated anti-inflammatory actions, how glucocorticoids tightly control overactive inflammatory response is not fully understood. Here we show that glucocorticoids suppress bacteria-induced inflammation by enhancing IRAK-M, a central negative regulator of Toll-like receptor signalling. The ability of glucocorticoids to suppress pulmonary inflammation induced by non-typeable Haemophilus influenzae is significantly attenuated in IRAK-M-deficient mice. Glucocorticoids improve the survival rate after a lethal non-typeable Haemophilus influenzae infection in wild-type mice, but not in IRAK-M-deficient mice. Moreover, we show that glucocorticoids and non-typeable Haemophilus influenzae synergistically upregulate IRAK-M expression via mutually and synergistically enhancing p65 and glucocorticoid receptor binding to the IRAK-M promoter. Together, our studies unveil a mechanism by which glucocorticoids tightly control the inflammatory response and host defense via the induction of IRAK-M and may lead to further development of anti-inflammatory therapeutic strategies.
    Nature Communications 01/2015; 6:6062. DOI:10.1038/ncomms7062 · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic inflammation has long been associated with the development of cancer. Among the various signaling pathways within cancer cells that can incite the expression of inflammatory molecules are those that activate IL-1 receptor-associated kinases (IRAK). The IRAK family is comprised of four family members, IRAK-1, IRAK-2, IRAK-3 (also known as IRAK-M), and IRAK-4, which play important roles in both positively and negatively regulating the expression of inflammatory molecules. The wide array of inflammatory molecules that are expressed in response to IRAK signaling within the tumor microenvironment regulate the production of factors which promote tumor growth, metastasis, immune suppression, and chemotherapy resistance. Based on published reports we propose that dysregulated activation of the IRAK signaling pathway in cancer cells contributes to disease progression by creating a highly inflammatory tumor environment. In this article, we present both theoretical arguments and reference experimental data in support of this hypothesis.
    Frontiers in Immunology 11/2014; 5:553. DOI:10.3389/fimmu.2014.00553