Clinical responses to undiluted and diluted smallpox vaccine

Division of General Medicine, University of Rochester, Rochester, New York, United States
New England Journal of Medicine (Impact Factor: 54.42). 05/2002; 346(17):1265-74. DOI: 10.1056/NEJMoa020534
Source: PubMed

ABSTRACT To evaluate the potential to increase the supply of smallpox vaccine (vaccinia virus), we compared the response to vaccination with 10(8.1), 10(7.2), and 10(7.0) plaque-forming units (pfu) of vaccinia virus per milliliter.
In this randomized, single-blind, prospective study, 680 adults who had not been previously immunized were inoculated intradermally with undiluted vaccine (mean titer, 10(8.1) pfu per milliliter), a 1:5 dilution, or a 1:10 dilution of vaccinia virus with use of a bifurcated needle, and the site was covered with a semipermeable dressing. Subjects were monitored for vesicle formation (an indicator of the success of vaccination) and adverse events for 56 days after immunization.
Success rates did not differ significantly among the groups and ranged from 97.1 to 99.1 percent after the first vaccination. Both the undiluted and diluted vaccines were reactogenic. In addition to the formation of pustules, common adverse events included the formation of satellite lesions, regional lymphadenopathy, fever, headache, nausea, muscle aches, fatigue, and chills consistent with the presence of an acute viral illness. Generalized and localized rashes, including two cases of erythema multiforme, were also observed.
When given by a bifurcated needle, vaccinia virus vaccine can be diluted to a titer as low as 10(7.0) pfu per milliliter (approximately 10,000 pfu per dose) and induce local viral replication and vesicle formation in more than 97 percent of persons.

Download full-text


Available from: Mark Wolff, Jan 17, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Modified Vaccinia virus Ankara (MVA) is an attenuated strain of vaccinia virus that is being considered as a safer alternative to replicating vaccinia vaccine strains such as Dryvax(®) and ACAM2000. Its excellent safety profile and large genome also make it an attractive vector for the delivery of heterologous genes from other pathogens. MVA was attenuated by prolonged passage through chick embryonic fibroblasts in vitro. In human and most mammalian cells, production of infectious progeny is aborted in the late stage of infection. Despite this, MVA provides high-level gene expression and is immunogenic in humans and other animals. A key issue for vaccine developers is the ability to be able to monitor an immune response to MVA in both vaccinia naïve and previously vaccinated individuals. To this end we have used antibody profiling by proteome microarray to compare profiles before and after MVA and Dryvax vaccination to identify candidate serodiagnostic antigens. Six antigens with diagnostic utility, comprising three membrane and three non-membrane proteins from the intracellular mature virion, were purified and evaluated in ELISAs. The membrane protein WR113/D8L provided the best sensitivity and specificity of the six antigens tested for monitoring both MVA and Dryvax vaccination, whereas the A-type inclusion protein homolog, WR148, provided the best discrimination. The ratio of responses to membrane protein WR132/A13L and core protein WR070/I1L also provided good discrimination between primary and secondary responses to Dryvax, whereas membrane protein WR101/H3L and virion assembly protein WR118/D13L together provided the best sensitivity for detecting antibody in previously vaccinated individuals. These data will aid the development novel MVA-based vaccines.
    Vaccine 11/2011; 30(3):614-25. DOI:10.1016/j.vaccine.2011.11.021 · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Few diseases can match the enormous impact that smallpox has had on mankind. Its influence can be seen in the earliest recorded histories of ancient civilizations in Egypt and Mesopotamia. With fatality rates up to 30%, smallpox left its survivors with extensive scarring and other serious sequelae. It is estimated that smallpox killed 500 million people in the 19th and 20th centuries. Given the ongoing concerns regarding the use of variola as a biological weapon, this review will focus on the licensed vaccines as well as current research into next-generation vaccines to protect against smallpox and other poxviruses.
    Vaccine 11/2009; 27 Suppl 4:D73-9. DOI:10.1016/j.vaccine.2009.07.103 · 3.49 Impact Factor
  • Source
    EMBO Reports 02/2006; 7(1):4-9. DOI:10.1038/sj.embor.7400606 · 7.86 Impact Factor