Article

CD39 is the dominant Langerhans cell-associated ecto-NTPDase: modulatory roles in inflammation and immune responsiveness.

Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Nature Medicine (Impact Factor: 28.05). 05/2002; 8(4):358-65. DOI: 10.1038/nm0402-358
Source: PubMed

ABSTRACT CD39, the endothelial ecto-nucleoside triphosphate diphosphohydrolase (NTPDase), regulates vascular inflammation and thrombosis by hydrolyzing ATP and ADP. Although ecto-NTPDase activities have been used as a marker of epidermal dendritic cells (DCs) known as Langerhans cells, the identity and function of these activities remain unknown. Here we report that Langerhans cells in CD39-/- mice express no detectable ecto-NTPDase activity. Irritant chemicals triggered rapid ATP and ADP release from keratinocytes and caused exacerbated skin inflammation in CD39-/- mice. Paradoxically, T cell-mediated allergic contact hypersensitivity was severely attenuated in CD39-/- mice. As to mechanisms, T cells increased pericellular ATP concentrations upon activation, and CD39-/- DCs showed ATP unresponsiveness (secondary to P2-receptor desensitization) and impaired antigen-presenting capacity. Our results show opposing outcomes of CD39 deficiency in irritant versus allergic contact dermatitis, reflecting its diverse roles in regulating extracellular nucleotide-mediated signaling in inflammatory responses to environmental insults and DC-T cell communication in antigen presentation.

0 Bookmarks
 · 
91 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Crosslinking of the immunoglobulin receptor FcεRI activates basophils and mast cells to induce immediate and chronic allergic inflammation. However, it remains unclear how the chronic allergic inflammation is regulated. Here, we showed that ecto-nucleotide pyrophosphatase-phosphodiesterase 3 (E-NPP3), also known as CD203c, rapidly induced by FcεRI crosslinking, negatively regulated chronic allergic inflammation. Basophil and mast cell numbers increased in Enpp3(-/-) mice with augmented serum ATP concentrations. Enpp3(-/-) mice were highly sensitive to chronic allergic pathologies, which was reduced by ATP blockade. FcεRI crosslinking induced ATP secretion from basophils and mast cells, and ATP activated both cells. ATP clearance was impaired in Enpp3(-/-) cells. Enpp3(-/-)P2rx7(-/-) mice showed decreased responses to FcεRI crosslinking. Thus, ATP released by FcεRI crosslinking stimulates basophils and mast cells for further activation causing allergic inflammation. E-NPP3 decreases ATP concentration and suppresses basophil and mast cell activity. Copyright © 2015 Elsevier Inc. All rights reserved.
    Immunity 02/2015; 42(2):279-93. DOI:10.1016/j.immuni.2015.01.015 · 19.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulatory T cells (Tregs) are suppressive T cells that have an essential role in maintaining the balance between immune activation and tolerance. Their development, either in the thymus, periphery, or experimentally in vitro, and stability and function all depend on the right mix of environmental stimuli. This review focuses on the effects of cytokines, metabolites, and the microbiome on both human and mouse Treg biology. The role of cytokines secreted by innate and adaptive immune cells in directing Treg development and shaping their function is well established. New and emerging data suggest that metabolites, such as retinoic acid, and microbial products, such as short-chain fatty acids, also have a critical role in guiding the functional specialization of Tregs. Overall, the complex interaction between distinct environmental stimuli results in unique, and in some cases tissue-specific, tolerogenic environments. Understanding the conditions that favor Treg induction, accumulation, and function is critical to defining the pathophysiology of many immune-mediated diseases and to developing new therapeutic interventions.
    Frontiers in Immunology 02/2015; 6:61. DOI:10.3389/fimmu.2015.00061
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We aimed to study the role of the nucleotide receptor P2Y2R in the development of experimental autoimmune uveitis (EAU). EAU was induced in P2Y2+/+ and P2Y2-/- mice by immunization with IRBP peptide or by adoptive transfer of in vitro restimulated semi-purified IRBP-specific enriched T lymphocytes from spleens and lymph nodes isolated from native C57Bl/6 or P2Y2+/+ and P2Y2-/- immunized mice. Clinical and histological scores were used to grade disease severity. Splenocytes and lymph node cell phenotypes were analyzed using flow cytometry. Semi-purified lymphocytes and MACS-purified CD4+ T lymphocytes from P2Y2+/+ and P2Y2-/- immunized mice were tested for proliferation and cytokine secretion. Our data show that clinical and histological scores were significantly decreased in IRBP-immunized P2Y2-/- mice as in P2Y2-/- mice adoptively transfered with enriched T lymphocytes from C57Bl/6 IRBP-immunized mice. In parallel, naïve C57Bl/6 mice adoptively transferred with T lymphocytes from P2Y2-/- IRBP-immunized mice also showed significantly less disease. No differences in term of spleen and lymph node cell recruitment or phenotype appeared between P2Y2-/- and P2Y2+/+ immunized mice. However, once restimulated in vitro with IRBP, P2Y2-/- T cells proliferate less and secrete less cytokines than the P2Y2+/+ one. We further found that antigen-presenting cells of P2Y2-/- immunized mice were responsible for this proliferation defect. Together our data show that P2Y2-/- mice are less susceptible to mount an autoimmune response against IRBP. Those results are in accordance with the danger model, which makes a link between autoreactive lymphocyte activation, cell migration and the release of danger signals such as extracellular nucleotides.
    PLoS ONE 02/2015; 10(2):e0116518. DOI:10.1371/journal.pone.0116518 · 3.53 Impact Factor

Full-text (2 Sources)

Download
21 Downloads
Available from
May 22, 2014