Article

The BRCA2 372 HH genotype is associated with risk of breast cancer in Australian women under age 60 years.

Oncology Division, Joint Experimental Oncology Programme, The Queensland Institute of Medical Research and The University of Queensland, Brisbane, 4029 Australia.
Cancer Epidemiology Biomarkers & Prevention (Impact Factor: 4.32). 05/2002; 11(4):413-6.
Source: PubMed

ABSTRACT The BRCA2 N372H nonconservative amino acid substitution polymorphism appears to affect fetal survival in a sex-dependent manner, and the HH genotype was found to be associated with a 1.3-fold risk of breast cancer from pooling five case-control studies of Northern European women. We investigated whether the BRCA2 N372H polymorphism was associated with breast cancer in Australian women using a population-based case-control design. The BRCA2 372 genotype was determined in 1397 cases under the age of 60 years at diagnosis of a first primary breast cancer and in 775 population-sampled controls frequency matched for age. Case-control analyses and comparisons of genotype distributions were conducted using logistic regression. All of the statistical tests were two-tailed. The HH genotype was independent of age and family history of breast cancer within cases and controls, and was more common in cases (9.2% versus 6.5%). It was associated with an increased risk of breast cancer, 1.47-fold unadjusted (95% confidence interval, 1.05-2.07; P = 0.02), and 1.42-fold (95% confidence interval, 1.00-2.02; P = 0.05) after adjusting for measured risk factors. This effect was still evident after excluding women with any non-Caucasian ancestry or the 33 cases known to have inherited a mutation in BRCA1 or BRCA2, and would explain approximately 3% of breast cancer. The BRCA2 N372H polymorphism appears to be associated with a modest recessively inherited risk of breast cancer in Australian women. This result is consistent with the findings for Northern European women.

0 Bookmarks
 · 
119 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BRCA2 gene plays an important role in homologous recombination. Polymorphic variants in this gene has been suggested to confer cancer susceptibility. Numerous studies have investigated association between BRCA2 N372H polymorphism and risk of several cancers, especially breast cancer. However, the results were inconsistent. We performed a comprehensive meta-analysis to provide a more precise assessment of the association between N372H and cancer risk, following the latest meta-analysis guidelines (PRISMA). Forty six studies involving 36299 cases and 48483 controls were included in our meta-analysis. The crude ORs and the 95% CIs were used to evaluate the strength of the association. The results indicated that the BRCA2 N372H variant was significantly associated with an increased risk of overall cancer (dominant model: OR = 1.07, 95% CI = 1.01-1.13; recessive model: OR = 1.12, 95% CI = 1.02-1.23). Moreover, stratified analyses by the cancer type and source of control observed significantly increased risk associated with BRCA2 N372H in subgroups with ovarian cancer, non-Hodgkin lymphoma and population-based controls, but not breast cancer or hospital-based controls. We also found such association among Africans. Overall, the meta-analysis suggested that BRCA2 N372H may be a cancer susceptibility polymorphism. Well-designed and large-scale studies are needed to substantiate the association between BRCA2 N372H polymorphism and cancer risk.
    Scientific Reports 10/2014; 4:6791. · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genetic susceptibility to breast cancer in women is conferred by a large number of genes, of which six have so far been identified. In the context of multiple-case families, BRCA1 and BRCA2 are the most important. Mutations in these genes confer high lifetime risks of breast cancer and ovarian cancer, and more moderate risks of prostate cancer and some other cancer types. Mutations in the CHEK2 and ATM genes, by contrast, cause much more modest (2–4 fold) risks of breast cancer. Genes so far identified explain approximately 20% of the familial aggregation of breast cancer. The remaining susceptibility genes have, so far, proved illusive, suggesting that they are numerous and confer moderate risks. A variety of techniques including genome-wide association studies, use of quantitative intermediate endpoints, and resequencing of genes may be required to identify them. The identification of such genes can provide a basis for targeted prevention of breast cancer.
    Journal of Mammary Gland Biology and Neoplasia 07/2004; 9(3). · 5.00 Impact Factor