Ghostbursting: a novel neuronal burst mechanism.

Physics Department, University of Ottawa, 150 Louis Pasteur, Ontario, Canada K1N 6N5.
Journal of Computational Neuroscience (Impact Factor: 2.44). 01/2002; 12(1):5-25. DOI: 10.1023/A:1014921628797
Source: PubMed

ABSTRACT Pyramidal cells in the electrosensory lateral line lobe (ELL) of weakly electric fish have been observed to produce high-frequency burst discharge with constant depolarizing current (Turner et al., 1994). We present a two-compartment model of an ELL pyramidal cell that produces burst discharges similar to those seen in experiments. The burst mechanism involves a slowly changing interaction between the somatic and dendritic action potentials. Burst termination occurs when the trajectory of the system is reinjected in phase space near the "ghost" of a saddle-node bifurcation of fixed points. The burst trajectory reinjection is studied using quasi-static bifurcation theory, that shows a period doubling transition in the fast subsystem as the cause of burst termination. As the applied depolarization is increased, the model exhibits first resting, then tonic firing, and finally chaotic bursting behavior, in contrast with many other burst models. The transition between tonic firing and burst firing is due to a saddle-node bifurcation of limit cycles. Analysis of this bifurcation shows that the route to chaos in these neurons is type I intermittency, and we present experimental analysis of ELL pyramidal cell burst trains that support this model prediction. By varying parameters in a way that changes the positions of both saddle-node bifurcations in parameter space, we produce a wide gallery of burst patterns, which span a significant range of burst time scales.

  • Source
    Regular and Chaotic Dynamics 01/2004; 3(9):281-297. · 0.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We give an overview of the analysis of a new type of bursting (ìghostburstingî) seen in pyramidal cells of weakly electric sh. We start with the experimental observations and characterization of the bursting, describe a compartmental model of a pyramidal cell that undergoes ghostbursting and the development of a simplied yet realistic conductanceñbased model of this cell. This model then motivates a minimal leaky integrateñandñr e model that also has the qualitative features of ghostbursting.
    Nonlinear Studies. 01/2004; 11(3).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The dynamics of individual neurons are crucial for producing functional activity in neuronal networks. An open question is how temporal characteristics can be controlled in bursting activity and in transient neuronal responses to synaptic input. Bifurcation theory provides a framework to discover generic mechanisms addressing this question. We present a family of mechanisms organized around a global codimension-2 bifurcation. The cornerstone bifurcation is located at the intersection of the border between bursting and spiking and the border between bursting and silence. These borders correspond to the blue sky catastrophe bifurcation and the saddle-node bifurcation on an invariant circle (SNIC) curves, respectively. The cornerstone bifurcation satisfies the conditions for both the blue sky catastrophe and SNIC. The burst duration and interburst interval increase as the inverse of the square root of the difference between the corresponding bifurcation parameter and its bifurcation value. For a given set of burst duration and interburst interval, one can find the parameter values supporting these temporal characteristics. The cornerstone bifurcation also determines the responses of silent and spiking neurons. In a silent neuron with parameters close to the SNIC, a pulse of current triggers a single burst. In a spiking neuron with parameters close to the blue sky catastrophe, a pulse of current temporarily silences the neuron. These responses are stereotypical: the durations of the transient intervals-the duration of the burst and the duration of latency to spiking-are governed by the inverse-square-root laws. The mechanisms described here could be used to coordinate neuromuscular control in central pattern generators. As proof of principle, we construct small networks that control metachronal-wave motor pattern exhibited in locomotion. This pattern is determined by the phase relations of bursting neurons in a simple central pattern generator modeled by a chain of oscillators.
    PLoS ONE 01/2014; 9(1):e85451. · 3.53 Impact Factor

Full-text (2 Sources)

Available from
May 22, 2014