Article

The effect of estrogens and dietary calcium deficiency on the extracellular matrix of articular cartilage in Göttingen miniature pigs.

Anatomisches Institut der Universität Kiel, Germany.
Annals of Anatomy - Anatomischer Anzeiger (Impact Factor: 2.08). 04/2002; 184(2):141-8. DOI: 10.1016/S0940-9602(02)80007-3
Source: PubMed

ABSTRACT Clinical observations have suggested that estrogens are involved in the pathogenesis of postmenopausal osteoarthritis (OA). However, positive and negative associations between the incidence of OA and serum estrogen concentrations have been reported. In contrast to this, osteoporosis is regarded as a disease with a strong estrogen-dependent component. Moreover, there is an interaction between estrogen and calcium deficiency: calcium supplementation potentiates the effect of estrogen therapy. The present study was designed to investigate how estrogen deficiency affects the articular cartilage depending on calcium supply. The distribution of different types of glycosaminoglycans and collagens can be used as an indicator for extracellular matrix changes induced by estrogen deficiency. Different levels of dietary calcium were therefore fed to intact and ovariectomized Göttingen miniature pigs for one year before articular cartilage was harvested. The histochemical staining for heavy sulfated glycosaminoglycans in the extracellular matrix of ovariectomized miniature pigs, especially of those fed with a low calcium diet, was stronger in comparison to intact animals. In intact animals type II-collagen was immunodetected in all zones of unmineralized and mineralized articular cartilage, while immunostaining for this protein was negative to weak in the deep radiated fiber zone of ovariectomized minipigs. These results suggest that the synthesis of heavy sulfated glycosaminoglycans and immunohistochemically detectable type II-collagen is possibly influenced by estrogen deficiency. In conclusion, under estrogen deficiency, the extracellular matrix of articular cartilage underwent similar changes to those observed in physiologically aging cartilage where keratan sulfate is increased as a heavy sulfated glycosaminoglycan.

0 Bookmarks
 · 
51 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Impairment of subchondral bone density and quality aggravates cartilage damage in osteoarthritis (OA). Accordingly, we assessed whether improving microstructure and quality at subchondral bone by the bone-forming agent parathyroid hormone (PTH) [1-34] prevent cartilage damage progression in a rabbit model of OA preceded by osteoporosis (OP). OP was induced in 20 female rabbits. At week 7, these rabbits underwent knee surgery to induce OA and, at week 12, they started either saline vehicle (n=10) or PTH (n=10) for 10 weeks. Ten healthy animals were used as controls. At week 22, microstructure was assessed by micro-computed tomography and bone remodelling by protein expression of alkaline phosphatase (ALP), metalloproteinase-9 (MMP9), osteoprotegerin (OPG) and receptor activator of nuclear factor-κB ligand (RANKL) at subchondral bone. Cartilage damage was evaluated using Mankin score. PTH reversed the decrease of bone area/tissue area, trabecular thickness, plate thickness, polar moment of inertia, ALP expression and OPG/RANKL ratio, as well as counteracted the increase of fractal dimension and MMP9 expression at subchondral bone of osteoarthritis preceded by osteoporosis (OPOA) rabbits compared to vehicle administration (P<0.05). Likewise, PTH decreased cartilage damage severity in OPOA rabbits. Good correlations were observed between subchondral bone structure or remodelling parameters, and cartilage Mankin score. Improvement of microstructural and remodelling parameters at subchondral bone by PTH [1-34] contributed to prevent cartilage damage progression in rabbits with early OPOA. These findings support the role of subchondral bone in OA. Further studies are warranted to establish the place of bone-forming agents as potential treatment in OA.
    Osteoarthritis and Cartilage 07/2011; 19(10):1228-36. DOI:10.1016/j.joca.2011.07.003 · 4.26 Impact Factor
  • Clinical Biochemistry 09/2011; 44(13). DOI:10.1016/j.clinbiochem.2011.08.609 · 2.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sex hormones contribute to the pathogenesis of osteoarthritis (OA) in both sexes. OA is normally not seen in pre-menopausal women, whereas men may develop the disease as early as the 30th year of life. OA also shows increased incidence in association with diseases such as diabetes mellitus. Recent years have seen characterization of essential components of a functional endocrinal network in the articular cartilage comprising not only sex hormones but apparently insulin, growth factors and various peptides as well. In this review, we summarize the latest information regarding the influence of sex hormones, insulin, growth factors and some peptides on healthy cartilage and their involvement in osteoarthritis. Both animal and human research data were considered. The results are presented in an information matrix that identifies what is known, with supporting references, and identifies areas for further investigation.
    Progress in Histochemistry and Cytochemistry 02/2011; 45(4):239-93. DOI:10.1016/j.proghi.2010.11.002 · 5.91 Impact Factor