Drosophila male meiosis as a model system for the study of cytokinesis in animal cells.

Istituto Pasteur-Fondazione Cenci Bolognetti, Universita' Roma La Sapienza, Italy.
Cell Structure and Function (Impact Factor: 1.65). 01/2002; 26(6):609-17. DOI: 10.1247/csf.26.609
Source: PubMed

ABSTRACT Drosophila male meiosis offers unique opportunities for mutational dissection of cytokinesis. This system allows easy and unambiguos identification of mutants defective in cytokinesis through the examination of spermatid morphology. Moreover, cytokinesis defects and protein immunostaining can be analyzed with exquisite cytological resolution because of the large size of meiotic spindles. In the past few years several mutations have been isolated that disrupt meiotic cytokinesis in Drosophila males. These mutations specify genes required for the assembly, proper constriction or disassembly of the contractile ring. Molecular characterization of these genes has identified essential components of the cytokinetic machinery, highlighting the role of the central spindle during cytokinesis. This structure appears to be both necessary and sufficient for signaling cytokinesis. In addition, many data indicate that the central spindle microtubules cooperatively interact with elements of the actomyosin contractile ring, so that impairment of either of these structures prevents the formation of the other.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gamma-tubulin, a protein critical for microtubule assembly, functions within multiprotein complexes. However, little is known about the respective role of gamma-tubulin partners in metazoans. For the first time in a multicellular organism, we have investigated the function of Dgrip84, the Drosophila orthologue of the Saccharomyces cerevisiae gamma-tubulin-associated protein Spc97p. Mutant analysis shows that Dgrip84 is essential for viability. Its depletion promotes a moderate increase in the mitotic index, correlated with the appearance of monopolar or unpolarized spindles, impairment of centrosome maturation, and increase of polyploid nuclei. This in vivo study is strengthened by an RNA interference approach in cultured S2 cells. Electron microscopy analysis suggests that monopolar spindles might result from a failure of centrosome separation and an unusual microtubule assembly pathway via centriolar triplets. Moreover, we point to an involvement of Dgrip84 in the spindle checkpoint regulation and in the maintenance of interphase microtubule dynamics. Dgrip84 also seems essential for male meiosis, ensuring spindle bipolarity and correct completion of cytokinesis. These data sustain that Dgrip84 is required in some aspects of microtubule dynamics and organization both in interphase and mitosis. The nature of a minimal gamma-tubulin complex necessary for proper microtubule organization in the metazoans is discussed.
    Molecular Biology of the Cell 02/2006; 17(1):272-82. · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A recent analysis of spindle positioning in yeast sheds light on how interactions between microtubules and the cleavage apparatus are modulated through mitosis to promote and maintain proper positioning of the spindle and cleavage plane relative to each other.
    Current biology: CB 07/2010; 20(14):R602-4. · 10.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During male and female gametogenesis in species ranging from insects to mammals, germ cell cyst formation by incomplete cytokinesis involves the stabilization of cleavage furrows and the formation of stable intercellular bridges called ring canals. Accurate regulation of incomplete cytokinesis is required for both female and male fertility in Drosophila melanogaster. Nevertheless, the molecular mechanisms controlling complete versus incomplete cytokinesis are largely unknown. Here, we show that the scaffold protein Cindr is a novel component of both mitotic and meiotic ring canals during Drosophila spermatogenesis. Strikingly, unlike other male germline ring canal components, including Anillin and Pavarotti, Cindr and contractile ring F-actin dissociate from mitotic ring canals and translocate to the fusome upon completion of the mitotic germ cell divisions. We provide evidence that the loss of Cindr from mitotic ring canals is coordinated by signals that mediate the transition from germ cell mitosis to differentiation. Interestingly, Cindr loss from ring canals coincides with completion of the mitotic germ cell divisions in both Drosophila females and males, thus marking a common step of gametogenesis. We also show that Cindr co-localizes with Anillin at mitotic and meiotic ring canals and is recruited to the contractile ring by Anillin during male germ cell meiotic cytokinesis. Taken together, our analyses reveal a key step of incomplete cytokinesis at the endpoint of the mitotic germ cell divisions in D. melanogaster.
    Developmental Biology 03/2013; · 3.87 Impact Factor


Available from
May 28, 2014