Drosophila male meiosis as a model system for the study of cytokinesis in animal cells.

Istituto Pasteur-Fondazione Cenci Bolognetti, Universita' Roma La Sapienza, Italy.
Cell Structure and Function (Impact Factor: 2.35). 01/2002; 26(6):609-17. DOI: 10.1247/csf.26.609
Source: PubMed

ABSTRACT Drosophila male meiosis offers unique opportunities for mutational dissection of cytokinesis. This system allows easy and unambiguos identification of mutants defective in cytokinesis through the examination of spermatid morphology. Moreover, cytokinesis defects and protein immunostaining can be analyzed with exquisite cytological resolution because of the large size of meiotic spindles. In the past few years several mutations have been isolated that disrupt meiotic cytokinesis in Drosophila males. These mutations specify genes required for the assembly, proper constriction or disassembly of the contractile ring. Molecular characterization of these genes has identified essential components of the cytokinetic machinery, highlighting the role of the central spindle during cytokinesis. This structure appears to be both necessary and sufficient for signaling cytokinesis. In addition, many data indicate that the central spindle microtubules cooperatively interact with elements of the actomyosin contractile ring, so that impairment of either of these structures prevents the formation of the other.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Cytokinesis separates the cytoplasm and the duplicated genome into two daughter cells at the end of cell division. This process must be finely regulated to maintain ploidy and prevent tumor formation. Drosophila male meiosis provides an excellent cell system for investigating cytokinesis. Mutants affecting this process can be easily identified and spermatocytes are large cells particularly suitable for cytological analysis of cytokinetic structures. Over the past decade, the powerful tools of Drosophila genetics and the unique characteristics of this cell system have led researchers to identify molecular players of the cell cleavage machinery and to address important open questions. Although spermatocyte cytokinesis is incomplete, resulting in formation of stable intercellular bridges, the molecular mechanisms are largely conserved in somatic cells. Thus, studies of Drosophila male meiosis will shed new light on the complex cell circuits regulating furrow ingression and substantially further our knowledge of cancer and other human diseases.
    07/2012; 2(3):185-196. DOI:10.4161/spmg.21711
    This article is viewable in ResearchGate's enriched format
  • [Show abstract] [Hide abstract]
    ABSTRACT: During male and female gametogenesis in species ranging from insects to mammals, germ cell cyst formation by incomplete cytokinesis involves the stabilization of cleavage furrows and the formation of stable intercellular bridges called ring canals. Accurate regulation of incomplete cytokinesis is required for both female and male fertility in Drosophila melanogaster. Nevertheless, the molecular mechanisms controlling complete versus incomplete cytokinesis are largely unknown. Here, we show that the scaffold protein Cindr is a novel component of both mitotic and meiotic ring canals during Drosophila spermatogenesis. Strikingly, unlike other male germline ring canal components, including Anillin and Pavarotti, Cindr and contractile ring F-actin dissociate from mitotic ring canals and translocate to the fusome upon completion of the mitotic germ cell divisions. We provide evidence that the loss of Cindr from mitotic ring canals is coordinated by signals that mediate the transition from germ cell mitosis to differentiation. Interestingly, Cindr loss from ring canals coincides with completion of the mitotic germ cell divisions in both Drosophila females and males, thus marking a common step of gametogenesis. We also show that Cindr co-localizes with Anillin at mitotic and meiotic ring canals and is recruited to the contractile ring by Anillin during male germ cell meiotic cytokinesis. Taken together, our analyses reveal a key step of incomplete cytokinesis at the endpoint of the mitotic germ cell divisions in D. melanogaster.
    Developmental Biology 03/2013; 377(1). DOI:10.1016/j.ydbio.2013.02.021 · 3.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multicolor immunostaining analysis is often a desirable tool in cell biology for most researchers. Nonetheless, this is not an easy task and often not affordable by many laboratories as it might require expensive instrumentation and sophisticated analysis software. Here, we describe a simple protocol for performing sequential immunostainings on two different Drosophila specimens. Our strategy relies on an efficient and reproducible method for removal primary antibodies and/or fluorophore-conjugated secondary antibodies that does not affect antigene integrity. We show that alternation of multiple rounds of antibody incubation and removal on the same slide, followed by registration of the same DAPI-stained image, provides a simple framework for the sequential detection of several antigens in the same cell. Given that the sample fixation procedures used for Drosophila tissues are compatible with most specimen processing protocols, we can envisage that the multicolor immunostaining strategy presented here can be also adaptated to different samples including mammalian tissues and/or cells. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Journal of Cellular Physiology 10/2013; DOI:10.1002/jcp.24506 · 3.87 Impact Factor


Available from
May 28, 2014