Article

Somatostatin receptor-targeted radionuclide therapy of tumors: preclinical and clinical findings.

Department of Nuclear Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands.
Seminars in Nuclear Medicine (Impact Factor: 3.13). 05/2002; 32(2):133-40. DOI: 10.1053/snuc.2002.31027
Source: PubMed

ABSTRACT In preclinical studies in rats we evaluated biodistribution and therapeutic effects of different somatostatin analogs, [(111)In-DTPA]octreotide, [(90)Y-DOTA,Tyr(3)]octreotide and [(177)Lu-DOTA,Tyr(3)]octreotate, currently also being applied in clinical radionuclide therapy studies. [Tyr(3)]octreotide and [Tyr(3)]octreotate, chelated with DTPA or DOTA, both showed high affinity binding to somatostatin receptor subtype 2 (sst(2)) in vitro. The radiolabelled compounds all showed high tumor uptake in sst(2)-positive tumors in vivo in rats, the highest uptake being reached with [(177)Lu-DOTA,Tyr(3)]octreotate. In preclinical therapy studies in vivo in rats, excellent, dose dependent, tumor size responses were found, responses appeared to be dependent on tumor size at therapy start. These preclinical data showed the great promise of radionuclide therapy with radiolabelled somatostatin analogues. They emphasised the concept that especially the combination of somatostatin analogs radiolabeled with different radionuclides, like (90)Y and (177)Lu, is most promising to reach a wider tumor size region of high curability. Furthermore, different phase I clinical studies, using [(111)In-DTPA]octreotide, [(90)Y-DOTA,Tyr(3)]octreotide or [(177)Lu-DOTA, Tyr(3)]octreotate are described. Fifty patients with somatostatin receptor-positive tumors were treated with multiple doses of [(111)In-DTPA(0)]octreotide. Forty patients were evaluable after cumulative doses of at least 20 GBq up to 160 GBq. Therapeutic effects were seen in 21 patients: partial remission in 1 patient, minor remissions in 6 patients, and stabilization of previously progressive tumors in 14 patients. The toxicity was generally mild bone marrow toxicity, but 3 of the 6 patients who received more than 100 GBq developed a myelodysplastic syndrome or leukemia. Radionuclide therapy with [(90)Y-DOTA,Tyr(3)]octreotide started in 3 different phase I trials. Overall, antimitotic effects have been observed: about 20% partial response and 60% stable disease (N = 92) along with complete symptomatic cure of several malignant insulinoma and gastrinoma patients. Maximum cumulative [(90)Y-DOTA,Tyr(3)]octreotide dose was about 26 GBq, without reaching the maximum tolerable dose. New is the use of [(177)Lu-DOTA,Tyr(3)]octreotate, which shows the highest tumor uptake of all tested octreotide analogs so far, with excellent tumor-to-kidney ratios. Radionuclide therapy with this analog in a phase 1 trial started recently in our center in 63 patients (238 administrations), Interim analysis of 18 patients with neuroendocrine tumors was performed very recently. According to the WHO, toxicity criteria no dose limiting toxicity was observed. Minor CT-assessed tumor shrinkage (25% - 50% reduction) was noticed in 6% of 18 patients and partial remission (50% - 100% reduction, SWOG criteria) in 39%. Eleven percent of patients had tumor progression and in 44% no changes were seen. These data show that radionuclide therapy with radiolabelled somatostatin analogs, like [DOTA, Tyr(3)]octreotide and [DOTA, Tyr(3)octreotate is a most promising new treatment modality for patients who have sst(2)-positive tumors.

0 Followers
 · 
95 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: When the German scientist Paul Ehrlich conceptualised the perfect therapeutic agent or “magic bullet” (magische Kugel), he foresaw therapies that would lead to death of the targeted organism without damaging the host. Modern medicine continues to be beguiled by the prospect of highly effective targeted therapies that are without toxicity. Great advances have recently been made in pinpointing potential therapeutic targets in cancer cells [1]. These include characterisation of specific oncogenic proteins critical to the growth or survival of cancer cells and that are amenable to inhibition by small molecules. Another example is the identification of cell surface proteins overexpressed by cancer cells that can be targeted by monoclonal antibodies to invoke immunological killing. Dramatic responses in cancers that were previously unresponsive to a wide range of conventional therapies initially led to magical thinking that such targeted therapies would be a panacea for cancer. Unfortunately ...
    European journal of nuclear medicine and molecular imaging 10/2014; DOI:10.1007/s00259-014-2928-y · 5.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peptide receptor radionuclide therapy (PRRT) consists of the systemic administration of a synthetic peptide, labeled with a suitable β-emitting radionuclide, able to irradiate tumors and their metastases via internalization through a specific receptor (usually somatostatin S2), over-expressed on the cell membrane. After almost 2 decades of experience, PRRT, with either (90)Y-octreotide or (177)Lu-octreotate, has established itself to be an efficient and effective therapeutic modality. As a treatment, it is relatively safe up to the known thresholds of absorbed and bio-effective isotope dosages and the renal and hematological toxicity profiles are acceptable if adequate protective measures are undertaken.
    Thoracic Surgery Clinics 08/2014; DOI:10.1016/j.thorsurg.2014.04.005 · 0.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The potential use of radionuclides in therapy has been recognized for many decades. A number of radionuclides, such as iodine-131 ((131)I), phosphorous-32 ((32)P), strontium-90 ((90)Sr), and yttrium-90 ((90)Y), have been used successfully for the treatment of many benign and malignant disorders. Recently, the rapid growth of this branch of nuclear medicine has been stimulated by the introduction of a number of new radionuclides and radiopharmaceuticals for the treatment of metastatic bone pain and neuroendocrine and other malignant or non-malignant tumours. Today, the field of radionuclide therapy is enjoying an exciting phase and is poised for greater growth and development in the coming years. For example, in Asia, the high prevalence of thyroid and liver diseases has prompted many novel developments and clinical trials using targeted radionuclide therapy. This paper reviews the characteristics and clinical applications of the commonly available therapeutic radionuclides, as well as the problems and issues involved in translating novel radionuclides into clinical therapies.
    Journal of Zhejiang University SCIENCE B 10/2014; 15(10):845-63. DOI:10.1631/jzus.B1400131 · 1.29 Impact Factor