Article

Dissipative lattice model with exact traveling discrete kink-soliton solutions: discrete breather generation and reaction diffusion regime.

Laboratoire d'Electronique, Informatique et Image (LE21) Université de Bourgogne, Aile des Sciences de l'Ingénieur, BP 47870, 21078 Dijon Cedex, France.
Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics 01/2000; 60(6 Pt B):7484-9. DOI: 10.1103/PhysRevE.60.7484
Source: PubMed

ABSTRACT We introduce a nonlinear Klein-Gordon lattice model with specific double-well on-site potential, additional constant external force and dissipation terms, which admits exact discrete kink or traveling wave fronts solutions. In the non-dissipative or conservative regime, our numerical simulations show that narrow kinks can propagate freely, and reveal that static or moving discrete breathers, with a finite but long lifetime, can emerge from kink-antikink collisions. In the general dissipative regime, the lifetime of these breathers depends on the importance of the dissipative effects. In the overdamped or diffusive regime, the general equation of motion reduces to a discrete reaction diffusion equation; our simulations show that, for a given potential shape, discrete wave fronts can travel without experiencing any propagation failure but their collisions are inelastic.

0 Bookmarks
 · 
46 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A contour detection based on a diffusive cellular nonlinear network is proposed. It is shown that there exists a particular nonlinear function for which, numerically, the obtained contour is satisfactory. Furthermore, this nonlinear function can be achieved using analog components.
    International Journal of Bifurcation and Chaos 01/2001; 11(01):179-183. · 0.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Kink propagation failure induced by coupling inhomogeneities in a Nagumo lattice is investigated. Considering the case of weak couplings, we define analytically and numerically the coupling conditions leading to the pinning of the kink.
    Physics Letters A 01/2002; 294(5):304-307. · 1.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We carry out a comprehensive analysis of a generalized discrete phi4 model, of which virtually all phi4 models discussed in the literature are particular cases. For this model we construct the exact solutions in the form of the basic Jacobi elliptic, hyperbolic and sine functions, and also give a list of short-periodic and even aperiodic solutions. Some of those solutions coincide with the known ones, others generalize the existing solutions and the rest of them are new. We then discuss the relation between the models supporting exact static solutions and the two-point maps. In particular, we show that some of the short-periodic and sine solutions can be found from factorized difference equations and even from a set of two difference equations, one of the first and another of the second order. Particular attention is paid to the discussion of the exceptional discrete (ED) models defined as models supporting the translationally invariant (TI) static solutions that can be placed arbitrarily with respect to the lattice. We show that some of the derived short-periodic solutions are TI ones while the others are not. For the TI static solutions we demonstrate the existence of the translational Goldstone mode for any location of the solution with respect to the lattice. We then analyze numerically the stability and other properties of the TI kink solutions. In conclusion, we divide the ED models into two classes: the ED I models support a two-parameter set of TI static solutions, while the ED II models support only a one-parameter set of such solutions.
    Journal of Physics A Mathematical and Theoretical 04/2009; 42(14). · 1.77 Impact Factor

Full-text (2 Sources)

Download
2 Downloads
Available from
Nov 24, 2014