Article

Dilated cardiomyopathy in mice deficient for the lysosomal cysteine peptidase cathepsin L.

Medizinische Klinik und Poliklinik C (Kardiologie und Angiologie), Universitätsklinikum Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 05/2002; 99(9):6234-9. DOI: 10.1073/pnas.092637699
Source: PubMed

ABSTRACT Dilated cardiomyopathy is a frequent cause of heart failure and is associated with high mortality. Progressive remodeling of the myocardium leads to increased dimensions of heart chambers. The role of intracellular proteolysis in the progressive remodeling that underlies dilated cardiomyopathy has not received much attention yet. Here, we report that the lysosomal cysteine peptidase cathepsin L (CTSL) is critical for cardiac morphology and function. One-year-old CTSL-deficient mice show significant ventricular and atrial enlargement that is associated with a comparatively small increase in relative heart weight. Interstitial fibrosis and pleomorphic nuclei were found in the myocardium of the knockout mice. By electron microscopy, CTSL-deficient cardiomyocytes contained multiple large and apparently fused lysosomes characterized by storage of electron-dense heterogeneous material. Accordingly, the assessment of left ventricular function by echocardiography revealed severely impaired myocardial contraction in the CTSL-deficient mice. In addition, echocardiographic and electrocardiographic findings to some degree point to left ventricular hypertrophy that most likely represents an adaptive response to cardiac impairment. The histomorphological and functional alterations of CTSL-deficient hearts result in valve insufficiencies. Furthermore, abnormal heart rhythms, like supraventricular tachycardia, ventricular extrasystoles, and first-degree atrioventricular block, were detected in the CTSL-deficient mice.

Full-text

Available from: Jörg Stypmann, Jun 04, 2015
0 Followers
 · 
88 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aortic valve disease (AVD) and aortopathy are associated with substantial morbidity and mortality, representing a significant cardiovascular healthcare burden worldwide. These mechanobiological structures are morphogenetically related and function in unison from embryonic development through mature adult tissue homeostasis, serving both coordinated and distinct roles. In addition to sharing common developmental origins, diseases of the aortic valve and proximal thoracic aorta often present together clinically. Current research efforts are focused on identifying etiologic factors and elucidating pathogenesis, including genetic predisposition, maladaptive cell-matrix remodeling processes, and hemodynamic and biomechanical perturbations. Here, we review the impact of these processes as they pertain to translational research efforts, emphasizing the overlapping relationship of these two disease processes. The successful application of new therapeutic strategies and novel tissue bioprostheses for AVD and/or aortopathy will require an understanding and integration of molecular and biomechanical processes for both diseases.
    Journal of Cardiovascular Translational Research 12/2014; 7(9):823-46. DOI:10.1007/s12265-014-9602-4 · 2.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Normal epithelial cells and carcinoma cells can acquire invasiveness by epithelial-to-mesenchymal transition (EMT), a process of considerable cellular remodeling. The endosomal/lysosomal compartment is a principal site of intracellular protein degradation. Lysosomal cathepsin proteases are secreted during cancer progression. The established pro-metastatic role of specific cysteine cathepsins has until now been ascribed to their contribution to extracellular matrix remodeling. We hypothesized that cysteine cathepsins affect transforming growth factor β-1 (TGFβ-1)-induced EMT of normal and malignant mammary epithelial cells. The role of lysosomal proteolysis in TGFβ-1-induced EMT and invasion was investigated in a normal and a novel malignant murine mammary epithelial cell line. The contribution of cysteine cathepsins was determined by addition of the general cysteine cathepsin inhibitor E64d. Hallmarks of EMT were analyzed by molecular- and cell-biologic analyses including real-time cell migration/invasion assays. A quantitative proteome comparison using stable isotopic labeling with amino acids in culture (SILAC) showed the effect of E64d on TGFβ-1 induced proteome changes. Lysosomal patterning and junctional adhesion molecule A (Jam-a) localization and abundance were analyzed by immunofluorescence. We found increased lysosome activity during EMT of malignant mammary epithelial cells. Cysteine cathepsin inhibition had no effect on the induction of the TGFβ-1-induced EMT program on transcriptional level. Protease inhibition did not affect invasion of TGFβ-1 treated normal mammary epithelial cells, but reduced the invasion of murine breast cancer cells. Remarkably, reduced invasion was also evident if E64d was removed 24 h before the invasion assay in order to allow for recovery of cathepsin activity. Proteome analyses revealed a high abundance of lysosomal enzymes and lysosome-associated proteins in cancer cells treated with TGFβ-1 and E64d. An accumulation of those proteins and of lysosomal vesicles was further confirmed by independent methods. Interestingly, E64d caused lysosomal accumulation of Jam-a, a tight junction component facilitating epithelial cell-cell adhesion. Our results demonstrate an important role of lysosomal proteolysis in cellular remodeling during EMT and a pivotal contribution of lysosomal cysteine cathepsins to TGFβ-1 induced acquisition of breast cancer cell invasiveness. These findings provide an additional rationale to use cathepsin inhibitors to stall tumor metastasis.
    Molecular Cancer 02/2015; 14(1):39. DOI:10.1186/s12943-015-0313-5 · 5.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardiac mitochondria are responsible for generating energy in the form of ATP through oxidative phosphorylation and are crucial for cardiac function. Mitochondrial dysfunction is a major contributor to loss of myocytes and development of heart failure. Myocytes have quality control mechanisms in place to ensure a network of functional mitochondria. Damaged mitochondria are degraded by a process called mitochondrial autophagy, or mitophagy, where the organelle is engulfed by an autophagosome and subsequently delivered to a lysosome for degradation. Evidence suggests that mitophagy is important for cellular homeostasis, and reduced mitophagy leads to inadequate removal of dysfunctional mitochondria. In this review, we discuss the regulation of mitophagy and the emerging evidence of the cardioprotective role of mitophagy. We also address the prospect of therapeutically targeting mitophagy to treat patients with cardiovascular disease.
    Journal of Molecular Medicine 01/2015; 93(3). DOI:10.1007/s00109-015-1254-6 · 4.74 Impact Factor