Article

TACE/ADAM17-TNF-alpha pathway in rat cortical cultures after exposure to oxygen-glucose deprivation or glutamate.

Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain.
Journal of Cerebral Blood Flow & Metabolism (Impact Factor: 5.34). 05/2002; 22(5):576-85. DOI: 10.1097/00004647-200205000-00009
Source: PubMed

ABSTRACT The role of the tumor necrosis factor (TNF)-alpha convertase (TACE/ADAM17) in the adult nervous system remains poorly understood. The authors have previously demonstrated that TACE is upregulated in rat forebrain slices exposed to oxygen-glucose deprivation (OGD). They have now used rat mixed cortical cultures exposed to OGD or glutamate to study (1) TACE expression and localization, and (2) the effects of TNF-alpha release on cell viability. OGD-or glutamate-caused TNF-alpha release, an effect that was blocked by the TACE inhibitor BB3103 (BB) (0.1-1 micromol/L; control: 1.67 +/- 0.59; OGD: 6.59 +/- 1.52; glutamate: 3.38 +/- 0.66; OGD +/- BB0.1: 3.23 +/- 0.67; OGD +/- BB1: 1.33 +/- 0.22 pg/mL, n = 6, P < 0.05). Assay of TACE activity as well as Western blot showed that TACE expression is increased in OGD-or glutamate-exposed cells. In control cultures, TACE immunoreactivity was present in some microglial cells, whereas, after OGD or glutamate, TACE immunostaining appeared in most microglial cells and in some astrocytes. Conversely, BB3103 (0.1 micromol/L) caused apoptosis after glutamate exposure as shown by annexin and Hoechst 33342 staining and caspase-3 activity, an effect mimicked by the proteasome inhibitor MG-132 (caspase activity: glutamate: 5.1 +/- 0.1; glutamate + BB: 7.8 +/- 0.8; glutamate + MG: 11.9 +/- 0.5 pmol. min(-1) mg(-1) protein, n = 4, P < 0.05), suggesting that translocation of the transcription factor NF-kappaB mediates TNF-alpha-induced antiapoptotic effect. Taken together, these data demonstrate that, in rat mixed neuronal-glial cortical cultures exposed to OGD or glutamate, (1) TACE/ADAM17 activity accounts for the majority of TNF-alpha shedding, (2) an increase in glial TACE expression contributes to the rise in TNF-alpha, and (3) TNF-alpha release in this setting inhibits apoptosis via activation of the transcription factor NF-kappaB.

0 Bookmarks
 · 
70 Views
  • Source
    Advances in Agronomy - ADVAN AGRON. 01/1999; 65:267-311.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Apoptosis triggered by exogenous or endogenous stimuli is a crucial phenomenon to determine the fate of neurons, both in physiological and in pathological conditions. Our previous study established that gastric inhibitory polypeptide (Gip) is a neurotrophic factor capable of preventing apoptosis of cerebellar granule neurons (CGNs), during its pre-commitment phase. In the present study, we conducted whole-genome expression profiling to obtain a comprehensive view of the transcriptional program underlying the rescue effect of Gip in CGNs. By using DNA microarray technology, we identified 65 genes, we named survival related genes, whose expression is significantly de-regulated following Gip treatment. The expression levels of six transcripts were confirmed by real-time quantitative polymerase chain reaction. The proteins encoded by the survival related genes are functionally grouped in the following categories: signal transduction, transcription, cell cycle, chromatin remodeling, cell death, antioxidant activity, ubiquitination, metabolism and cytoskeletal organization. Our data outline that Gip supports CGNs rescue via a molecular framework, orchestrated by a wide spectrum of gene actors, which propagate survival signals and support neuronal viability.
    International Journal of Molecular Sciences 04/2014; 15(4):5596-622. · 2.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: γ-Aminobutyric acid (GABA)- and serotonin (5-HT)-mediated cell signaling, neuronal survival enhancement, and reduced neuronal death in brainstem during liver injury followed by active liver regeneration have a critical role in maintaining routine bodily functions. In the present study, GABAB and 5-HT2A receptor functional regulation, interrelated actions of neuronal survival factors, and expression of apoptotic factors in the brainstem during GABA and 5-HT chitosan nanoparticles-induced active liver regeneration in partially hepatectomized rats were evaluated. Partially hepatectomized rats were treated with the nanoparticles, and receptor assays and confocal microscopic studies of GABAB and 5-HT2A receptors, gene expression studies of GABAB and 5-HT2A receptors, nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), Akt-1, phospholipase C, Bax, and caspase-8 were performed with the brainstems of experimental animals. A significant decrease in GABAB and 5-HT2A receptor numbers and gene expressions denoted a homeostatic adjustment by the brain to trigger the sympathetic innervations during elevated DNA synthesis in the liver. The neuronal apoptosis resulting from the loss of liver function after partial hepatectomy was minimized by nanoparticle treatment in rats compared with rats with no treatment during regeneration. This was confirmed from the gene expression patterns of NF-κB, TNF-α, Akt-1, phospholipase C, Bax, and caspase-8. The present study revealed the potential of GABA and 5-HT chitosan nanoparticles for increasing neuronal survival in the brainstem during liver injury following regeneration, which avoids many neuropsychiatric problems. © 2013 Wiley Periodicals, Inc.
    Journal of Neuroscience Research 09/2013; 91(9):1203-14. · 2.73 Impact Factor