The effect of Gd-DTPA on T-1-weighted choline signal in human brain tumours

CRC Clinical MR Research Group, The Institute of Cancer Research and The Royal Marsden NHS Trust, Sutton. Surrey, SM2 5PT, United Kingdom.
Magnetic Resonance Imaging (Impact Factor: 2.09). 02/2002; 20(1):127-30. DOI: 10.1016/S0730-725X(02)00485-X
Source: PubMed


The influence of Gd-DTPA on T(1)-weighted (T(1)W) proton MR spectra has been investigated in 19 patients with histologically verified low (n = 13) or high-grade (n = 6) gliomas. Repeat measurements were performed on 9 patients (7 low-grade and 2 high-grade), with 28 examinations performed in total. Comparison of spectra obtained before and after 0.2 mmol/kg Gd-DTPA showed contrast agent induced broadening of the choline signal without significant signal area change. Lack of enhancement of the choline signal with the T(1)-weighted acquisitions implies that the contrast agent and the trimethylamine-containing species do not undergo significant direct interaction. Contrast agent induced changes in the choline signal observed in this and previous studies may, therefore, be attributable to T2*/susceptibility-based effects.

4 Reads
  • Source
    • "Elevated levels of the composite Cho signal (tCho) have been reported in many studies of excised human breast tumours, cultured human breast cancer cells, and animal models [16]. Fewer studies though have been devoted to the performance of in vivo 1H-MR spectroscopic detection of tCho in breast lesions [1–3, 10]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: To determine whether in vivo proton magnetic resonance spectroscopy at 3T can provide accurate breast lesion characterization, and to determine the effect of gadolinium on the resonance of tCho. Twenty-four positive-mammogram patients were examined on a 3T MR scanner. 1H-MRS was performed before and after gadolinium administration. tCho peak was qualitatively evaluated before and after contrast injection. Fourteen out of 27 lesions proved to be malignant after histopathological diagnosis. Using 1H-MRS, before contrast injection, 6/14 confirmed malignancies and 11/13 benign lesions were correctly classified; while, after contrast injection, 11/14 confirmed malignancies and 12/13 benign processes were correctly classified. Post gadolinium 1H-MRS proved useful in picking up tCho signal, improving the overall accuracy, sensitivity, and specificity by 35%, 83%, and 9%, respectively. 1H-MRS overall accuracy, sensitivity, and specificity in detecting breast lesion's malignancy were increased after gadolinium administration. It is prudent to perform 1H-MRS before contrast injection in large breast lesions to avoid choline underestimation. In cases of small or non-mass lesions, it is recommended to perform 1H-MRS after contrast injection for better voxel prescription to enable a reliable preoperative diagnosis.
    The Scientific World Journal 05/2012; 2012(6):754380. DOI:10.1100/2012/754380 · 1.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accurate diagnosis is essential for optimum management and treatment of patients with brain tumours. Proton magnetic resonance spectroscopy ((1)H MRS) provides information non-invasively on tumour biochemistry and has been shown to provide important additional information to that obtained by conventional radiology. We review the current status of (1)H MRS in classifying brain tumour type and grade, for monitoring response to therapy and progression to higher grade, and as a molecular imaging technique for determining tumour extent for treatment planning.
    NMR in Biomedicine 05/2003; 16(3):123-31. DOI:10.1002/nbm.822 · 3.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sensitivity, positive predictive value (PPV), and negative predictive value (NPV) of conventional MR imaging in predicting glioma grade are not high. Relative cerebral blood volume (rCBV) measurements derived from perfusion MR imaging and metabolite ratios from proton MR spectroscopy are useful in predicting glioma grade. We evaluated the sensitivity, specificity, PPV, and NPV of perfusion MR imaging and MR spectroscopy compared with conventional MR imaging in grading primary gliomas. One hundred sixty patients with a primary cerebral glioma underwent conventional MR imaging, dynamic contrast-enhanced T2*-weighted perfusion MR imaging, and proton MR spectroscopy. Gliomas were graded as low or high based on conventional MR imaging findings. The rCBV measurements were obtained from regions of maximum perfusion. Metabolite ratios (choline [Cho]/creatine [Cr], Cho/N-acetylaspartate [NAA], and NAA/Cr) were measured at a TE of 144 ms. Tumor grade determined with the three methods was then compared with that from histopathologic grading. Logistic regression and receiver operating characteristic analyses were performed to determine optimum thresholds for tumor grading. Sensitivity, specificity, PPV, and NPV for identifying high-grade gliomas were also calculated. Sensitivity, specificity, PPV, and NPV for determining a high-grade glioma with conventional MR imaging were 72.5%, 65.0%, 86.1%, and 44.1%, respectively. Statistical analysis demonstrated a threshold value of 1.75 for rCBV to provide sensitivity, specificity, PPV, and NPV of 95.0%, 57.5%, 87.0%, and 79.3%, respectively. Threshold values of 1.08 and 1.56 for Cho/Cr and 0.75 and 1.60 for Cho/NAA provided the minimum C2 and C1 errors, respectively, for determining a high-grade glioma. The combination of rCBV, Cho/Cr, and Cho/NAA resulted in sensitivity, specificity, PPV, and NPV of 93.3%, 60.0%, 87.5%, and 75.0%, respectively. Significant differences were noted in the rCBV and Cho/Cr, Cho/NAA, and NAA/Cr ratios between low- and high-grade gliomas (P <.0001,.0121,.001, and.0038, respectively). The rCBV measurements and metabolite ratios both individually and in combination can increase the sensitivity and PPV when compared with conventional MR imaging alone in determining glioma grade. The rCBV measurements had the most superior diagnostic performance (either with or without metabolite ratios) in predicting glioma grade. Threshold values can be used in a clinical setting to evaluate tumors preoperatively for histologic grade and provide a means for guiding treatment and predicting postoperative patient outcome.
    American Journal of Neuroradiology 11/2003; 24(10):1989-98. · 3.59 Impact Factor
Show more