Dam-dependent phase variation of Ag43 in Escherichia coli is altered in a seqA mutant

202A Johnson Pavilion, Department of Microbiology, School of Medicine, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia 19104-6076, USA.
Molecular Microbiology (Impact Factor: 5.03). 05/2002; 44(2):521-32. DOI: 10.1046/j.1365-2958.2002.02918.x
Source: PubMed

ABSTRACT In Escherichia coli, phase variation of the outer membrane protein Ag43 encoded by the agn43 gene is mediated by DNA methylation and the global regulator OxyR. Transcription of agn43 occurs (ON phase) when three Dam target sequences in the agn43 regulatory region are methylated, which prevents the repressor OxyR from binding. Conversely, transcription is repressed (OFF) when these Dam target sequences are unmethylated and OxyR binds. A change in expression phase requires a concomitant change in the DNA methylation state of these Dam target sequences. To gain insight into the process of inheritance of the expression phase and the DNA methylation state, protein-DNA interactions at agn43 were examined. Binding of OxyR at agn43 was sufficient to protect the three GATC sequences contained within its binding site from Dam-dependent methylation in vitro, suggesting that no other factors are required to maintain the unmethylated state and OFF phase. To maintain the methylated state of the ON phase, however, Dam must access the hemimethylated agn43 region after DNA replication, and OxyR binding must not occur. OxyR bound hemimethylated agn43 DNA, but the affinity was severalfold lower than for unmethylated DNA. This presumably contributes to the maintenance of the methylated state but, at the same time, may allow for infrequent OxyR binding and a switch to the OFF phase. Hemimethylated agn43 DNA was also a binding substrate for the sequestration protein SeqA. Thus, SeqA, OxyR and Dam may compete for the same hemimethylated agn43 DNA that is formed after DNA replication in an ON phase cell. In isolates with a mutant seqA allele, agn43 phase variation rates were altered and resulted in a bias to the OFF phase. In part, this can be attributed to the observed decrease in the level of DNA methylation in the seqA mutant.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Escherichia coli is a versatile organism capable of causing a variety of intestinal and extraintestinal diseases, as well as existing as part of the commensal flora. A variety of factors permit specific attachment to host receptors including fimbrial adhesins and outer membrane proteins such as autotransporters. One of the better characterized autotransporters is Antigen 43 (Ag43), the major phase-variable surface protein of E. coli. Ag43 is associated with bacterial cell-cell aggregation and biofilm formation. Nevertheless, the precise biological significance and contribution to intestinal colonization remain to be elucidated. Here we investigated the contribution of Ag43 to E. coli adherence to intestinal epithelial cells and colonization of the mouse intestine. These investigations revealed that Ag43 increased in vitro adherence of E. coli to epithelial cells by promoting bacterial cell-cell aggregation but that Ag43 did not promote specific interactions with the mammalian cells. Furthermore, Ag43 did not contribute significantly to colonization of the mouse intestine and expression of Ag43 was lost a few days after colonization of the mouse was established. Unexpectedly, considering its similarity to other adhesins, our findings suggest that Ag43 does not act as a direct colonization factor by binding to mammalian cells.
    FEMS Microbiology Letters 08/2008; 284(2):237-46. DOI:10.1111/j.1574-6968.2008.01207.x · 2.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the bacterial world, methylation is most commonly associated with restriction-modification systems that provide a defense mechanism against invading foreign genomes. In addition, it is known that methylation plays functionally important roles, including timing of DNA replication, chromosome partitioning, DNA repair, and regulation of gene expression. However, full DNA methylome analyses are scarce due to a lack of a simple methodology for rapid and sensitive detection of common epigenetic marks (ie N(6)-methyladenine (6 mA) and N(4)-methylcytosine (4 mC)), in these organisms. Here, we use Single-Molecule Real-Time (SMRT) sequencing to determine the methylomes of two related human pathogen species, Mycoplasma genitalium G-37 and Mycoplasma pneumoniae M129, with single-base resolution. Our analysis identified two new methylation motifs not previously described in bacteria: a widespread 6 mA methylation motif common to both bacteria (5'-CTAT-3'), as well as a more complex Type I m6A sequence motif in M. pneumoniae (5'-GAN(7)TAY-3'/3'-CTN(7)ATR-5'). We identify the methyltransferase responsible for the common motif and suggest the one involved in M. pneumoniae only. Analysis of the distribution of methylation sites across the genome of M. pneumoniae suggests a potential role for methylation in regulating the cell cycle, as well as in regulation of gene expression. To our knowledge, this is one of the first direct methylome profiling studies with single-base resolution from a bacterial organism.
    PLoS Genetics 01/2013; 9(1):e1003191. DOI:10.1371/journal.pgen.1003191 · 8.17 Impact Factor
  • 06/2014; 2014(4). DOI:10.1128/ecosalplus.ESP-0003-2013