Developmental constraints versus flexibility in morphological evolution

Institute of Evolutionary and Ecological Sciences, Leiden University, PO Box 9516, 2300 RA Leiden, The Netherlands.
Nature (Impact Factor: 42.35). 05/2002; 416(6883):844-7. DOI: 10.1038/416844a
Source: PubMed

ABSTRACT Evolutionary developmental biology has encouraged a change of research emphasis from the sorting of phenotypic variation by natural selection to the production of that variation through development. Some morphologies are more readily generated than others, and developmental mechanisms can limit or channel evolutionary change. Such biases determine how readily populations are able to respond to selection, and have been postulated to explain stasis in morphological evolution and unexplored morphologies. There has been much discussion about evolutionary constraints but empirical data testing them directly are sparse. The spectacular diversity in butterfly wing patterns is suggestive of how little constrained morphological evolution can be. However, for wing patterns involving serial repeats of the same element, developmental properties suggest that some directions of evolutionary change might be restricted. Here we show that despite the developmental coupling between different eyespots in the butterfly Bicyclus anynana, there is great potential for independent changes. This flexibility is consistent with the diversity of wing patterns across species and argues for a dominant role of natural selection, rather than internal constraints, in shaping existing variation.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Correlation patterns have been widely used in evolutionary studies for exploring the role of development in channelling morphological evolution. The approach was firstly introduced by Olson and Miller in the 1950s, but it did not gain prominence until the 1980s, due to some extent to Gould and Lewontin's (Proc R Soc Lond B 205:581-598, 1979) assertion of the importance of considering organisms as integrated entities, where the internal organization of a structure, and not only the selective regime acting upon it, would play a fundamental role in its evolution. Here we show that this approach, mainly focused on the study of small, quantitative shape changes of existing structures, does not deal with a fundamental aspect of developmental systems, that is, their intrinsic capacity of originating morphological novelties. We show that only when the physicochemical processes underlying morphogenesis and pattern formation are taken into account, would the causal role of development be fully incorporated into the evolutionary view.
    Evolutionary Biology 09/2014; 41(3):494-502. DOI:10.1007/s11692-014-9275-6 · 3.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many butterflies possess striking structures called eyespots on their wings, and several studies have sought to understand the selective forces that have shaped their evolution. Work over the last decade has shown that a major function of eyespots is their ability to reduce predation by being intimidating to attacking predators. Two competing hypotheses seek to explain the cause of intimidation, one suggesting 'eye-mimicry' and the other their 'conspicuousness' as the reason. There is an on-going debate about which of these better explains the effectiveness of eyespots against predation. We undertook a series of indoor experiments to understand the relative importance of conspicuousness and eye-mimicry, and therefore how predator perception may have influenced the evolution of eyespots. We conducted choice tests where artificial paper models mimicking Junonia almana butterflies were presented to chickens and their preference of attack recorded. We first established that birds avoided models with a pair of eyespots. However, contrary to previous, outdoor experiments, we found that the total area of eyespots did not affect their effectiveness. Non-eye-like, fan shaped patterns derived from eyespots were found to be just as effective as eye-like circular patterns. Furthermore, we did not find a significant effect of symmetry of patterns, again in discordance with previous work. However, across all experiments, models with a pair of patterns, symmetric or asymmetric, eyelike or non-eye-like, suffered from fewer attacks compared with other models. The study highlights the importance of pairedness of eyespots, and supports the hypothesis that two is a biologically significant number that is important in prey-predator signalling. We discuss the implications of our results for the understanding of eyespot evolution.
    BMC Evolutionary Biology 12/2015; 15(1):307. DOI:10.1186/s12862-015-0307-3 · 3.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Mammals show a predictable scaling relationship between limb bone size and body mass. This relationship has a genetic basis which likely evolved via natural selection, but it is unclear how much the genetic correlation between these traits in turn impacts their capacity to evolve independently. We selectively bred laboratory mice for increases in tibia length independent of body mass, to test the hypothesis that a genetic correlation with body mass constrains evolutionary change in tibia length.ResultsOver 14 generations, we produced mean tibia length increases of 9-13%, while mean body mass was unchanged, in selectively bred mice and random-bred controls. Using evolutionary scenarios with different selection and quantitative genetic parameters, we also found that this genetic correlation impedes the rate of evolutionary change in both traits, slowing increases in tibia length while preventing decreases in body mass, despite the latter¿s negative effect on fitness.Conclusions Overall, results from this ongoing selection experiment suggest that parallel evolution of relatively longer hind limbs among rodents, for example in the context of strong competition for resources and niche partitioning in heterogeneous environments, may have occurred very rapidly on geological timescales, in spite of a moderately strong genetic correlation between tibia length and body mass.
    BMC Evolutionary Biology 12/2014; 14(1):258. DOI:10.1186/PREACCEPT-8844566431425109 · 3.41 Impact Factor

Full-text (2 Sources)

Available from
Oct 8, 2014