Biological soil crusts in a xeric Florida shrubland: composition, abundance, and spatial heterogeneity of crusts with different disturbance histories

Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
Microbial Ecology (Impact Factor: 3.12). 02/2002; 43(1):1-12. DOI: 10.1007/s00248-001-1017-5
Source: PubMed

ABSTRACT Biological soil crusts consisting of algae, cyanobacteria, lichens, fungi, bacteria, and mosses are common in habitats where water and nutrients are limited and vascular plant cover is discontinuous. Crusts alter soil factors including water availability, nutrient content, and erosion susceptibility, and thus are likely to both directly and indirectly affect plants. To establish this link, we must first understand the crust landscape. We described the composition, abundance, and distribution of microalgae in crusts from a periodically burned, xeric Florida shrubland, with the goal of understanding the underlying variability they create for vascular plants, as well as the scale of that variability. This is the first comprehensive study of crusts in the southeastern United States, where the climate is mesic but sandy soils create xeric conditions. We found that crusts were both temporally and spatially heterogeneous in depth and species composition. For example, cyanobacteria and algae increased in abundance 10-15 years after fire and away from dominant shrubs. Chlorophyll a levels recovered rapidly from small-scale disturbance relative to intact crusts, but these disturbances added to crust patchiness. Plants less than 1 m apart can experience different crust environments that may alter plant fitness, plant interactions, and plant community composition.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biological soil crusts (BSCs) are capable of modifying nutrient availability to favor the establishment of biogeochemical cycles. Microbial activities serve as critical roles for both carbon and nutrient transformation in BSCs. However, little is known about microbial activities and physical-chemical properties of BSCs in the Gurbantunggut Desert, Xinjiang, China. In the present research, a sampling line with 1-m wide and 20-m long was set up in each of five typical interdune areas selected randomly in the Gurbantunggut Desert. Within each sampling line, samples of bare sand sheet, algal crusts, lichen crusts and moss crusts were randomly collected at the depth of 0–2 cm. Variations of microalgal biomass, microbial biomass, enzyme activities and soil physical-chemical properties in different succession of BSCs were analyzed. The relationships between microalgal biomass, microbial biomass, enzymatic activities and soil physical-chemical properties were explored by stepwise regression. Our results indicate that microalgal biomass, microbial biomass and most of enzyme activities increased as the BSCs developed and their highest values occurred in lichen or moss crusts. Except for total K, the contents of most soil nutrients (organic C, total N, total P, available N, available P and available K) were the lowest in the bare sand sheet and significantly increased with the BSCs development, reaching their highest values in moss crusts. However, pH values significantly decreased as the BSCs developed. Significant and positive correlations were observed between chlorophyll a and microbial biomass C. Total P and N were positively associated with chlorophyll a and microbial biomass C, whereas there was a significant and negative correlation between microbial biomass and available P. The growth of cyanobacteria and microorganism contributed C and N in the soil, which offered substrates for enzyme activities thus increasing enzyme activities. Probably, improvement in enzyme activities increased soil fertility and promoted the growth of cyanobacteria, eukaryotic algae and heterotrophic microorganism, with the accelerating succession of BSCs. The present research found that microalgal-microbial biomass and enzyme activities played important roles on the contents of nutrients in the successional stages of BSCs and helped us to understand developmental mechanism in the succession of BSCs.
    Journal of Arid Land 02/2015; 7(1). DOI:10.1007/s40333-014-0035-3 · 0.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The microbial community compositions and potential ammonia oxidation in the topsoil at different positions of sand dune (stoss slope, crest, lee slope, and interdune) from the Gurbantunggut Desert, the largest semi-fixed desert in China, were investigated using several molecular methods. Actinobacteria and Proteobacteria (especially Alphaproteobacteria) were commonly the dominant taxa across all soil samples. Bacterial communities were similar in soils collected from the stoss slopes and interdunes (HC-BSCs, biological soil crusts with a high abundance of cyanobacteria), containing more abundant cyanobacterial populations (16.9-24.5%) than those (0.2-0.7% of Cyanobacteria) in the crests and lee slopes (LC-BSCs, biological soil crusts with a low abundance of cyanobacteria). The Cyanobacteria were mainly composed of Microcoleus spp., and quantitative PCR analysis revealed that 16S rRNA gene copy numbers of Cyanobacteria (especially genus Microcoleus) were at least two orders of magnitude higher in HC-BSCs than in LC-BSCs. Heterotrophic Geodermatophilus spp. frequently occurred in HC-BSCs (2.5-8.0%), whereas genera Arthrobacter, Bacillus, and Segetibacter were significantly abundant in LC-BSC communities. By comparison, the desert archaeal communities were less complex, and were dominated by Nitrososphaera spp. The amoA gene abundance of ammonia-oxidizing archaea (AOA) was higher than that of ammonia-oxidizing bacteria (AOB) in all soil samples, particularly in the interdunal soils (10(6)-10(8) archaeal amoA gene copies per gram dry soil), indicating that AOA possibly dominate the ammonia oxidation at the interdunes.
    The Journal of Microbiology 11/2014; 52(11):898-907. DOI:10.1007/s12275-014-4075-3 · 1.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Soil fungal communities have high local diversity and turnover, but the relative contribution of environmental and regional drivers to those patterns remains poorly understood. Local factors that contribute to fungal diversity include soil properties and the plant community, but there is also evidence for regional dispersal limitation in some fungal communities. We used different plant communities with different soil conditions and experimental manipulations of both vegetation and dispersal to distinguish among these factors. Specifically, we compared native shrublands with former native shrublands that had been disturbed or converted to pasture, resulting in soils progressively more enriched in carbon and nutrients. We tested the role of vegetation via active removal, and we manipulated dispersal by adding living soil inoculum from undisturbed native sites. Soil fungi were tracked for 3 years, with samples taken at ten time points from June 2006 to June 2009. We found that soil fungal abundance, richness, and community composition responded primarily to soil properties, which in this case were a legacy of plant community degradation. In contrast, dispersal had no effect on soil fungi. Temporal variation in soil fungi was partly related to drought status, yet it was much broader in native sites compared to pastures, suggesting some buffering due to the increased soil resources in the pasture sites. The persistence of soil fungal communities over 3 years in this study suggests that soil properties can act as a strong local environmental filter. Largely persistent soil fungal communities also indicate the potential for strong biotic resistance and soil legacies, which presents a challenge for both the prediction of how fungi respond to environmental change and our ability to manipulate fungi in efforts such as ecosystem restoration.
    Microbial Ecology 06/2014; 68(4). DOI:10.1007/s00248-014-0443-0 · 3.12 Impact Factor


Available from