An alpha-mercaptoacrylic acid derivative (PD150606) inhibits selective motor neuron death via inhibition of kainate-induced Ca2+ influx and not via calpain inhibition.

Neurobiology, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium.
Neuropharmacology (Impact Factor: 4.82). 05/2002; 42(5):706-13. DOI: 10.1016/S0028-3908(02)00010-2
Source: PubMed

ABSTRACT Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by selective motor neuron death. The exact mechanism responsible for this selectivity is not clear, although it is known that motor neurons are very sensitive to excitotoxicity. This high sensitivity is due to a high density of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors on their surface and to a limited Ca(2+) buffering capacity. Ca(2+) can enter the cell upon stimulation through voltage-operated Ca(2+) channels and through the Ca(2+)-permeable portion of AMPA receptors. How this Ca(2+) kills motor neurons is incompletely understood. In the present study, we report that kainate (KA)-induced motor neuron death is purely mediated through Ca(2+) entering motor neurons through Ca(2+)-permeable AMPA receptors and that voltage-operated Ca(2+) channels play no significant role. In contrast to what has been observed in other neuronal models or after N-methyl-D-aspartate stimulation, NO synthase inhibition and a number of antioxidants did not protect motor neurons from KA-induced death. Only PD150606, derived from alpha-mercaptoacrylic acid and considered as a selective calpain antagonist, inhibited dose-dependently the KA-induced motor neuron death. However, other calmodulin and calpain inhibitors were not effective. At least part of the inhibitory effect of PD150606 is due to an irreversible inhibition of the Ca(2+) influx through the Ca(2+)-permeable AMPA receptor. These results demonstrate the interesting property of PD150606 to interfere with excitotoxicity-dependent motor neuron death and show that PD150606 is not an exclusive calpain/calmodulin antagonist.


Available from: Ludo Van Den Bosch, Jan 04, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disorder characterized by the selective degeneration of defined subgroups of motoneuron in the brainstem, spinal cord and motor cortex with signature hallmarks of mitochondrial Ca2+ overload, free radical damage, excitotoxicity and impaired axonal transport. Although intracellular disruptions of cytosolic and mitochondrial calcium, and in particular low cytosolic calcium ([Ca2+]c) buffering and a strong interaction between metabolic mechanisms and [Ca2+]i have been identified predominantly in motoneuron impairment, the causes of these disruptions are unknown. The existing evidence suggests that the mutant superoxide dismutase1 (mtSOD1)-mediated toxicity in ALS acts through mitochondria, and that alteration in cytosolic and mitochondria-ER microdomain calcium accumulation are critical to the neurodegenerative process. Furthermore, chronic excitotoxcity mediated by Ca2+-permeable AMPA and NMDA receptors seems to initiate vicious cycle of intracellular calcium dysregulation which leads to toxic Ca2+ overload and thereby selective neurodegeneration. Recent advancement in the experimental analysis of calcium signals with high spatiotemporal precision has allowed investigations of calcium regulation in-vivo and in-vitro in different cell types, in particular selectively vulnerable/resistant cell types in different animal models of this motoneuron disease. This review provides an overview of latest advances in this field, and focuses on details of what has been learned about disrupted Ca2+ homeostasis and mitochondrial degeneration. It further emphasizes the critical role of mitochondria in preventing apoptosis by acting as a Ca2+ buffers, especially in motoneurons, in pathophysiological conditions such as ALS.
    01/2014; 2(26). DOI:10.1186/2052-8426-2-26
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mercaptoacrylate calpain inhibitor, PD150606, has been shown by X-ray crystallography to bind to a hydrophobic groove in the enzyme's penta-EF-hand domains far away from the catalytic cleft and has been previously described as an uncompetitive inhibitor of calpains. The penta-peptide LSEAL has been reported to be an inhibitor of calpain and was predicted to bind in the same hydrophobic groove. The X-ray crystal structure of calpain-2 bound to its endogenous calpain inhibitor, calpastatin, shows that calpastatin also binds to the hydrophobic grooves in the two penta-EF-hand domains, but its inhibitory domain binds to the protease core domains and blocks the active site cleft directly.
    Biochimica et Biophysica Acta (BBA) - General Subjects 09/2014; 1840(12). DOI:10.1016/j.bbagen.2014.08.014 · 3.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Long-term exposure of ethanol (EtOH) alters the structure and function in brain and spinal cord. The present study addresses the mechanisms of EtOH-induced damaging effects on spinal motoneurons in vitro. Altered morphology and biochemical changes of such damage were demonstrated by in situ Wright staining and DNA ladder assay. EtOH at low to moderate (25-50 mM) concentrations induced damaging effects in the motoneuronal scaffold which involved activation of proteases like μ-calpain and caspase-3. Caspase-8 was seen only at higher (100 mM) EtOH concentration. Further, pretreatment with calpeptin, a potent calpain inhibitor, confirmed the involvement of active proteases in EtOH-induced damage to motoneurons. The lysosomal enzyme cathepsin D was also elevated in the motoneurons by EtOH, and this effect was significantly attenuated by inhibitor treatment. Overall, EtOH exposure rendered spinal motoneurons vulnerable to damage, and calpeptin provided protection, suggesting a critical role of calpain activation in EtOH-induced alterations in spinal motoneurons.
    Neurochemical Research 05/2013; DOI:10.1007/s11064-013-1077-1 · 2.55 Impact Factor