Article

Functional reconstitution of endothelial nitric oxide synthase reveals the importance of serine 1179 in endothelium-dependent vasomotion.

Department of Pharmacology, Vascular Cell Signaling and Therapeutics Program, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Conn 06536, USA.
Circulation Research (Impact Factor: 11.09). 06/2002; 90(8):904-10.
Source: PubMed

ABSTRACT Phosphorylation of endothelial nitric oxide synthase (eNOS) at serine 1179 can activate the enzyme, leading to NO release. Because eNOS is important in regulating vascular tone, we investigated whether phosphorylation of this residue is involved in vasomotion. Adenoviral transduction of endothelial cells (ECs) with the phosphomimetic S1179DeNOS markedly increased basal and vascular endothelial cell growth factor (VEGF)-stimulated NO release compared with cells transduced with wild-type virus. Conversely, adenoviral transduction of ECs with the non-phosphorylatable S1179AeNOS suppressed basal and stimulated NO release. Using a novel method for luminal delivery of adenovirus, transduction of the endothelium of carotid arteries from eNOS knockout mice with S1179DeNOS completely restored NO-mediated dilatation to acetylcholine (ACh), whereas vasomotor responses in arteries transduced with S1179AeNOS were significantly attenuated. Basal NO release was also significantly reduced in arteries transduced with S1179AeNOS, compared with S1179DeNOS. Thus, our data directly demonstrate that phosphorylation of eNOS at serine 1179 is an important regulator of basal and stimulated NO release in ECs and in intact blood vessels.

Download full-text

Full-text

Available from: Jun Yu, Dec 30, 2013
0 Followers
 · 
67 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transient disruption of endothelial adherens junctions and cytoskeletal remodeling are responsible for increases in vascular permeability induced by inflammatory stimuli and vascular endothelial growth factor (VEGF). Nitric oxide (NO) produced by endothelial NO synthase (eNOS) is critical for VEGF induced changes in permeability in vivo, however, the molecular mechanisms by which endogenous NO modulates endothelial permeability is not clear. Here we show that the lack of eNOS reduces VEGF induced permeability, an effect mediated by enhanced Rac-GTPase activation and stabilization of cortical actin. The loss of NO, increased the recruitment of the Rac-GEF, Tiam-1, to adherens junctions and VE-cadherin and reduced Rho-activation and stress fiber formation. In addition, NO deficiency reduced VEGF-induced VE-cadherin phosphorylation, and impaired the localization, but not the activation, of c-src to cell junctions. The physiological role of eNOS activation is clear since VEGF, histamine and inflammation induced vascular permeability is reduced in mice with bearing the knockin mutation of the key phosphorylation site S1176. Thus, NO is critical for Rho GTPase dependent regulation of cytoskeletal architecture leading to reversible changes in vascular permeability.
    Journal of Cell Science 05/2014; 127(Pt 9):2120. DOI:10.1242/jcs.153601 · 5.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.
    Pharmacological reviews 02/2014; 66(2):513-69. DOI:10.1124/pr.112.007351 · 18.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Posttranscriptional control of gene expression is crucial for regulating plurality of proteins and functional plasticity of the proteome under (patho)physiologic conditions. Alternative splicing as well as micro (mi)RNA-mediated mechanisms play an important role for the regulation of protein expression on posttranscriptional level. Both alternative splicing and miRNAs were shown to influence cardiovascular functions, such as endothelial thrombogenicity and the vascular tone, by regulating the expression of several vascular proteins and their isoforms, such as Tissue Factor (TF) or the endothelial nitric oxide synthase (eNOS). This review will summarize and discuss the latest findings on the (patho)physiologic role of alternative splicing processes as well as of miRNAs on modulation of vascular functions, such as coagulation, thrombosis, and regulation of the vascular tone.
    10/2013; 2013:948765. DOI:10.1155/2013/948765