Article

Biophysical consequences of link chemistry and polymer size on stealth erythrocytes: Size does matter

Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 05/2002; 1561(2):147-58. DOI: 10.1016/S0005-2736(02)00339-5
Source: PubMed

ABSTRACT Immunocamouflaged red blood cells (RBC) are produced by cell surface derivatization with methoxypolyethylene glycol (mPEG). These immunologically attenuated cells may reduce the risk of allosensitization in chronically transfused patients. To characterize the effects of differing linker chemistries and polymer lengths, RBC were modified with cyanuric chloride activated mPEG (C-mPEG 5 kDa), benzotriazole carbonate methoxyPEG (BTC-mPEG; 5 or 20 kDa) or N-hydroxysuccinimidyl ester of mPEG propionic acid (SPA-mPEG; 2, 5 or 20 kDa). Biophysical methods including particle electrophoresis and aqueous two-phase polymer partitioning were employed to compare the PEG derivatives. While C-mPEG was faster reacting, both BTC-mPEG and SPA-mPEG gave comparable findings after 1 h. Both PEG surface density and molecular mass had a large effect on RBC surface properties. Proportional changes in electrophoretic mobility and preferential phase partitioning were achieved by increasing either the quantity of surface PEG or the PEG molecular mass. In addition, two-phase partitioning may provide a means for efficiently removing unmodified or lightly modified (hence potentially immunogenic) RBC in the clinical setting. Furthermore, mPEG modification significantly inhibits cell-cell interaction as evidenced by loss of Rouleaux formation and, consequently, sedimentation rate. Importantly, BTC-mPEG 20 kDa RBC showed normal in vivo survival in mice at immunoprotective concentrations (up to 2 mM).

Download full-text

Full-text

Available from: Mark D Scott, Feb 25, 2014
0 Followers
 · 
115 Views
  • Source
    • "These methods have resulted in various levels of antigen protection. In vivo studies using PEG-grafted RBCs revealed that PEG-modified RBCs have normal circulation below certain grafting concentrations [9] [10]. However, no information is currently available on the number of PEG molecules grafted or the distribution or clearance of PEG-modified RBCs. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The in vivo circulation of hyperbranched polyglycerol (HPG) grafted red blood cells (RBCs) was investigated in mice. The number of HPG molecules grafted per RBC was measured using tritium labeled HPGs ((3)H-HPG) of different molecular weights; the values ranged from 1 × 10(5) to 2 × 10(6) molecules per RBC. HPG-grafted RBCs were characterized in vitro by measuring the electrophoretic mobility, complement mediated lysis, and osmotic fragility. Our results show that RBCs grafted with 1.5 × 10(5) HPG molecules per RBC having molecular weights 20 and 60 kDa have similar characteristics as that of control RBCs. The in vivo circulation of HPG-grafted RBCs was measured by a tail vain injection of (3)H-HPG60K-RBC in mice. The radioactivity of isolated RBCs, whole blood, plasma, different organs, urine and feces was evaluated at different time intervals. The portion of (3)H-HPG60K-RBC that survived the first day in mice (52%) remained in circulation for 50 days. Minimal accumulation radioactivity in organs other than liver and spleen was observed suggesting the normal clearance mechanism of modified RBCs. Animals gained normal weights and no abnormalities observed in necropsy analysis. The stability of the ester-amide linker between the RBC and HPG was evaluated by comparing the clearance rate of (3)H-HPG60K-RBC and PKH-26 lipid fluorescent membrane marker labeled HPG60K-RBCs. HPG modified RBCs combine the many advantages of a dendritic polymer and RBCs, and hold great promise in systemic drug delivery and other applications of functional RBC.
    Biomaterials 04/2012; 33(10):3047-57. DOI:10.1016/j.biomaterials.2011.12.053 · 8.31 Impact Factor
  • Source
    • "Consequent to membrane derivatization, mPEG-modified allogeneic and xenogeneic cells demonstrated a global, multivalent, attenuation of antigenicity and immunogenicity. This effect arouse in part from charge camouflage and significantly diminished cell:cell (e.g., T cell:APC or T cell:islet cell) and ligand:receptor (e.g., antibody:antigen or CD28:CD80) interactions [17] [26]. The efficacy of this immunocamouflage was dependent on polymer molecular weight (i.e., size) and grafting density. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The induction of anergy or tolerance to prevent allorecognition is of clinical interest. To this end, the effects of methoxypoly(ethylene glycol) [mPEG] grafting to allogeneic lymphocytes on proliferation and phenotype (Th17 and Treg) was examined in vitro and in vivo. Control studies demonstrated that PEGylation did not affect cells viability or proliferation (mitogen) potential. Conditioned media (1° MLR) collected at 72 h from resting PBMC demonstrated no immunomodulatory effects whereas the control MLR demonstrated significant (p < 0.001) pro-proliferative potential and significantly increased in IL-2, TNF-α, and INF-γ. However, 1° media from either resting mPEG-PBMC or the PEGylated MLR resulted in a significant inhibitory effect (p < 0.001) in the 2° MLR and no increase in cytokines. PEGylation of donor murine splenocytes resulted in significant in vivo immunosuppressive effects in H2-disparate mice. While unmodified allogeneic splenocytes resulted in a significant in vivo decrease in Treg and increased Th17 lymphocytes, PEGylated allogeneic splenocytes yielded significantly increased Tregs and baseline levels of Th17 lymphocytes. This effect was persistent to at least 30 days post challenge and was not reversed by unmodified allogeneic cells. These studies demonstrate that PEGylation of allogeneic lymphocytes induced an immunoquiescent state both in vitro and in vivo.
    Biomaterials 08/2011; 32(35):9494-503. DOI:10.1016/j.biomaterials.2011.08.061 · 8.31 Impact Factor
  • Source
    • "As previously reported, attempts to design biocompatible artificial surfaces revealed that the grafting of hydrophilic polymers sterically impeded protein adsorption and surface–macromolecule interactions [18,33–35]. Our previous studies on biological cells showed similar mPEG-mediated ''antifouling " effects in antibody induced agglutination reactions and red blood cell Rouleaux formation [8] [9] [14] [16] [26]. When macromolecules approach mPEG-modified surfaces, they contact polymer chains, resulting in decreased entropy, and thus increased free energy of the system. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Development of novel approaches for the immunomodulation of donor cells would have significant utility in transfusion and transplantation medicine. Immunocamouflage of cell surfaces by covalently grafted methoxypoly(ethylene glycol) (mPEG) (PEGylation) has emerged as a promising approach. While previous studies demonstrated the in vitro and in vivo efficacy of immunocamouflaged allogeneic blood cells, the biophysical mechanisms of immunoprotection have not been well-defined due to the fragility of intact cells. To overcome this limitation, polystyrene beads (1.2 and 8.0 microm) were used to elucidate the biophysical effects of polymer size, density and linker chemistry on charge camouflage and protein adsorption. These findings were correlated with biological studies using red blood cells and lymphocytes. Charge camouflage of both beads and cells was best achieved with long polymers. However, protein adsorption studies demonstrated an unexpected effect of target size. For 1.2 microm beads, decreased protein adsorption was best achieved with short (2 kDa) polymers whereas long chain (20 kDa) polymers were optimal for 8.0 microm particles. The biophysical findings correlated well with biological immunocamouflage as measured by particle electrophoresis and the inhibition of antibody-antigen (CD3, CD4 and CD28) recognition. Moreover, it was observed that antigen topography (CD28 vs. CD4) was of significance in selecting the appropriate polymer size. The biophysical interactions of PEGylated surfaces and macromolecules involve complex mechanisms dependent on the molecular weight, grafting concentration, target size and surface complexity. Cellular PEGylation strategies must be customized to account for target cell size, membrane complexity and antigen density and height.
    Acta biomaterialia 07/2010; 6(7):2631-41. DOI:10.1016/j.actbio.2010.01.031 · 5.68 Impact Factor
Show more