Orbitofrontal lesions in rats impair reversal but not acquisition of go, no-go odor discriminations.

Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, 25 Ames Hall, Baltimore, MD 21218, USA.
Neuroreport (Impact Factor: 1.4). 06/2002; 13(6):885-90. DOI: 10.1097/00001756-200205070-00030
Source: PubMed

ABSTRACT Recent evidence suggests that orbitofrontal cortex lesions cause an inability to withhold inappropriate responses particularly when learned behavior must be modified to reflect changes in the likely outcome or consequence of responding. By this account, orbitofrontal cortex should not be necessary for acquisition of simple discrimination problems, but should be critical for acquiring reversals of those problems. However, previous work in rats has shown orbitofrontal cortex to be critical for withholding responses even in a simple go, no-go discrimination task. Here we have reexamined the contribution of rat orbitofrontal cortex to acquisition and reversal of go, no-go odor discrimination problems. Contrary to prior reports, we found that rats with lesions of the orbitofrontal cortex acquired novel discrimination problems at the same rate as controls. Impairments were evident in lesioned rats when the response contingencies of the odors in the discrimination problem were reversed. These findings suggest that orbitofrontal cortex is not necessary for inhibiting responses unless responses must be altered to reflect changing relationships between cues and outcomes.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mouse lemurs are suggested to represent promising novel non-human primate models for aging research. However, standardized and cross-taxa cognitive testing methods are still lacking. Touchscreen-based testing procedures have proven high stimulus control and reliability in humans and rodents. The aim of this study was to adapt these procedures to mouse lemurs, thereby exploring the effect of age. We measured appetitive learning and cognitive flexibility of two age groups by applying pairwise visual discrimination (PD) and reversal learning (PDR) tasks. On average, mouse lemurs needed 24 days of training before starting with the PD task. Individual performances in PD and PDR tasks correlate significantly, suggesting that individual learning performance is unrelated to the respective task. Compared to the young, aged mouse lemurs showed impairments in both PD and PDR tasks. They needed significantly more trials to reach the task criteria. A much higher inter-individual variation in old than in young adults was revealed. Furthermore, in the PDR task, we found a significantly higher perseverance in aged compared to young adults, indicating an age-related deficit in cognitive flexibility. This study presents the first touchscreen-based data on the cognitive skills and age-related dysfunction in mouse lemurs and provides a unique basis to study mechanisms of inter-individual variation. It furthermore opens exciting perspectives for comparative approaches in aging, personality, and evolutionary research.
    PLoS ONE 01/2014; 9(10):e109393. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The orbitofrontal cortex (OFC) has been described as signaling outcome expectancies or value. Evidence for the latter comes from the studies showing that neural signals in the OFC correlate with value across features. Yet features can co-vary with value, and individual units may participate in multiple ensembles coding different features. Here we used unblocking to test whether OFC neurons would respond to a predictive cue signaling a 'valueless' change in outcome flavor. Neurons were recorded as the rats learned about cues that signaled either an increase in reward number or a valueless change in flavor. We found that OFC neurons acquired responses to both predictive cues. This activity exceeded that exhibited to a 'blocked' cue and was correlated with activity to the actual outcome. These results show that OFC neurons fire to cues with no value independent of what can be inferred through features of the predicted outcome.
    eLife. 07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Impaired cognitive processing is a hallmark of addiction. In particular, deficits in inhibitory control can propel continued drug use despite adverse consequences. Clinical evidence shows that detoxified alcoholics exhibit poor inhibitory control in the Continuous Performance Task (CPT) and related tests of motor impulsivity. Animal models may provide important insight into the neural mechanisms underlying this consequence of chronic alcohol exposure though pre-clinical investigations of behavioral inhibition during alcohol abstinence are sparse. The present study employed the rat 5 Choice-Continuous Performance Task (5C-CPT), a novel pre-clinical variant of the CPT, to evaluate attentional capacity and impulse control over the course of protracted abstinence from chronic intermittent alcohol consumption. In tests conducted with familiar 5C-CPT conditions EtOH-exposed rats exhibited impaired attentional capacity during the first hours of abstinence and impaired behavioral restraint (increased false alarms) during the first 5d of abstinence that dissipated thereafter. Subsequent tests employing visual distractors that increase the cognitive load of the task revealed significant increases in impulsive action (premature responses) at 3 and 5 weeks of abstinence, and the emergence of impaired behavioral restraint (increased false alarms) at 7 weeks of abstinence. Collectively, these findings demonstrate the emergence of increased impulsive action in alcohol-dependent rats during protracted alcohol abstinence and suggest the 5C-CPT with visual distractors may provide a viable behavioral platform for characterizing the neurobiological substrates underlying impaired behavioral inhibition resulting from chronic intermittent alcohol exposure.
    PLoS ONE 01/2014; 9(10):e109948. · 3.53 Impact Factor

Full-text (2 Sources)

Available from
Jun 5, 2014