Article

Hypoxia and carbon monoxide in the vasculature.

Department of Medicine, Division of Newborn Medicine, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
Antioxidants and Redox Signaling (Impact Factor: 7.19). 05/2002; 4(2):291-9. DOI: 10.1089/152308602753666343
Source: PubMed

ABSTRACT Hypoxia is sensed by all mammalian cells and elicits a variety of adaptive and pathophysiological responses at the molecular and cellular level. For the pulmonary vasculature, hypoxia causes increased vasoconstriction and vessel-wall remodeling. These responses are mediated by complex intracellular cascades leading to altered gene expression and cell-cell interaction. Hypoxia transiently increases the transcriptional rate of the heme oxygenase-1 (HO-1) gene, resulting in increased production of carbon monoxide (CO) and bilirubin. CO has vasodilatory and antiinflammatory properties in the vasculature, whereas bilirubin is an antioxidant. Both enzymatic products could thus modulate the hypoxic cellular response. Accumulating data suggest that CO inhibits the hypoxic induction of genes encoding vasoconstrictors and smooth muscle cell mitogens in the early hypoxic phase. During chronic hypoxia, low CO levels tilt the balance toward increased production of growth factors and vasoconstrictors that promote vessel-wall remodeling. Mice null in the HO-1 gene manifest decreased tolerance to hypoxia with right ventricular dilatation and infarction, whereas targeted lung overexpression of HO-1 prevents hypoxia-induced inflammatory responses and protects against the development of pulmonary hypertension. Such observations point to CO as a critical modulator of the body's adaptive responses to hypoxia.

0 Bookmarks
 · 
105 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although iron is known to be essential for the normal development and health of the central nervous system, abnormal iron deposits are found in and around multiple sclerosis (MS) lesions that themselves are closely associated with the cerebral vasculature. However, the origin of this excess iron is unknown, and it is not clear whether this is one of the primary causative events in the pathogenesis of MS, or simply another consequence of the long-lasting inflammatory conditions. Here, applying a systems biology approach, we propose an additional way for understanding the neurodegenerative component of the disease caused by chronic subclinical extravasation of hemoglobin, in combination with multiple other factors including, but not limited to, dysfunction of different cellular protective mechanisms against extracellular hemoglobin reactivity and oxidative stress. Moreover, such considerations could also shed light on and explain the higher susceptibility of MS patients to a wide range of cardiovascular disorders.
    Cellular and Molecular Life Sciences CMLS 02/2014; · 5.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the effects of antithrombin III (AT III) injection via the portal vein in acute liver failure. Thirty rats were intraperitoneally challenged with lipopolysaccharide (LPS) and D-galactosamine (GalN) and divided into three groups: a control group; a group injected with AT III via the tail vein; and a group injected with AT III via the portal vein. AT III (50 U/kg body weight) was administrated 1 h after challenge with LPS and GalN. Serum levels of inflammatory cytokines and fibrin degradation products, hepatic fibrin deposition, and hepatic mRNA expression of hypoxia-related genes were analyzed. Serum levels of alanine aminotransferase, tumor necrosis factor-α and interleukin-6 decreased significantly following portal vein AT III injection compared with tail vein injection, and control rats. Portal vein AT III injection reduced liver cell destruction and decreased hepatic fibrin deposition. This treatment also significantly reduced hepatic mRNA expression of lactate dehydrogenase and heme oxygenase-1. A clinically acceptable dose of AT III injection into the portal vein suppressed liver damage, probably through its enhanced anticoagulant and anti-inflammatory activities.
    World Journal of Gastroenterology 04/2012; 18(16):1884-91. · 2.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Induction of the antioxidant enzyme heme oxygenase-1 (HO-1) affords cellular protection and suppresses proliferation of vascular smooth muscle cells (VSMCs) associated with a variety of pathological cardiovascular conditions including myocardial infarction and vascular injury. However, the underlying mechanisms are not fully understood. Over-expression of Cav3.2 T-type Ca(2+) channels in HEK293 cells raised basal [Ca(2+)]i and increased proliferation as compared with non-transfected cells. Proliferation and [Ca(2+)]i levels were reduced to levels seen in non-transfected cells either by induction of HO-1 or exposure of cells to the HO-1 product, carbon monoxide (CO) (applied as the CO releasing molecule, CORM-3). In the aortic VSMC line A7r5, proliferation was also inhibited by induction of HO-1 or by exposure of cells to CO, and patch-clamp recordings indicated that CO inhibited T-type (as well as L-type) Ca(2+) currents in these cells. Finally, in human saphenous vein smooth muscle cells, proliferation was reduced by T-type channel inhibition or by HO-1 induction or CO exposure. The effects of T-type channel blockade and HO-1 induction were non-additive. Collectively, these data indicate that HO-1 regulates proliferation via CO-mediated inhibition of T-type Ca(2+) channels. This signalling pathway provides a novel means by which proliferation of VSMCs (and other cells) may be regulated therapeutically.
    Pflügers Archiv - European Journal of Physiology 04/2014; · 4.87 Impact Factor