Cyclometalated products of [(COE)(2)RhCl](2) and 1,3-(RSCH(2))(2)C(6)H(4) (R = (t)Bu, (i)Pr) Are Dimeric. Synthesis, molecular structures, and solution dynamics of [mu-ClRh(H)(RSCH(2))(2)C(6)H(3)-2,6](2).

Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
Inorganic Chemistry (Impact Factor: 4.59). 06/2002; 41(10):2633-41.
Source: PubMed

ABSTRACT Two tridentate thioether pincer ligands, 1,3-(RSCH(2))(2)C(6)H(4) (R = (t)()Bu, 1a; R = (i)()Pr, 1b) underwent cyclometalation using [(COE)(2)RhCl](2) in air/moisture-free benzene at room temperature. The resultant complexes, [mu-ClRh(H)(RSCH(2))(2)C(6)H(3)-2,6](2) (R = (t)Bu, 2a; R = (i)Pr, 2b) are dimeric both in the solid state and in solution. A battery of variable-temperature one- and two-dimensional (1)H NMR experiments showed conclusively that both complexes undergo dynamic exchange in solution. Exchange between two dimeric diastereomers of 2a in solution occurred via rotation about the Rh-C(ipso) bond. The dynamic exchange of 2b was significantly more complex as an additional exchange mechanism, sulfur inversion, occurred, which resulted in the exchange between several diastereomers in solution.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Suzuki-Miyaura C-C cross coupling (SMC), an important synthetic strategy for many organic molecules, has several advantages such as mild reaction conditions, high tolerance toward various functional groups and ease in isolation of the product. Palladium(ii) ligated with phosphines (particularly bulky and electron-rich) and N-heterocyclic carbenes (NHCs) has been found to be efficient in the catalysis of SMC. The drawback with many of these catalysts is their air/moisture sensitivity. Since 2000, palladium(ii) complexes of organosulphur and related ligands have emerged as viable alternatives to palladium-phosphine/carbene complexes as they have sufficient thermal stability, air and moisture insensitivity. Moreover synthesis of complexes of such ligands is easy. In this perspective Suzuki-Miyaura C-C coupling reactions catalyzed with palladium(ii)-complexes of organosulphur ligands have been reviewed. Catalysis of SMC with palladium(ii) complexes of organoselenium and tellurium ligands, studied much less in comparison to those of organosulphur ligands, is also included.
    Dalton Transactions 01/2013; · 3.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ECE-pincer sulfato palladium complexes (pincer = [C(6)H(3)(CH(2)E)(2)-2,6](-); E = SPh (), SMe (), S(t)Bu (), NMe(2) ()) were synthesized and characterized. In the solid-state (X-ray determinations) and exist as neutral ECE-pincer palladium sulfato complexes with a mu(2)-O,O' bridging sulfato ligand. IR and Raman spectroscopic studies revealed that in the solid-state the complexes can be present as either solely neutral or as a mixture of neutral and ionic species, depending on the preparation and morphology of the solids. In water, ionic complexes with non-coordinating sulfate ions prevail. Preliminary studies of the catalytic activity of in the Suzuki-Miyaura C-C cross-coupling reaction of 3-iodobenzoic acid and sodium tetraphenylborate in water reveal that the C-C cross-coupling product is efficiently formed in good yields at room temperature.
    Dalton Transactions 06/2009; · 3.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We describe a stepwise synthesis of the hydrido, N-heterocyclic dicarbene iridium(III) pincer complex [Ir(H)I(C(NHC)CC(aNHC))(NCMe)] (3) which features a combination of normal and abnormal NHC ligands. The reaction of the bis(imidazolium) diiodide [(CH(imid)CHCH(imid))]I(2) (1) with [Ir(μ-Cl)(cod)](2) afforded first the mono-NHC Ir(I) complex [IrI(cod)(CH(imid)CHC(NHC))]I (2), which was then reacted with 2 equiv. of Cs(2)CO(3) in acetonitrile at 60 °C for 40 h to yield 3. These observations support our previously proposed mechanism for the formation of hydrido, N-heterocyclic dicarbene iridium(III) pincer complexes from the reaction of bis(imidazolium) salts with weak bases involving a mono-NHC Ir(I) intermediate. We describe the reactivity of the mono-NHC Ir(I) complex 2 under various conditions. By changing the reaction solvent from MeCN to toluene, we observed the cleavage of the imidazol-2-ylidene ring and the formation of an iminoformamide-containing mono-NHC Ir(I) complex [IrI(cod){[NHCH=CHN(Ad)CHO]CHC(NHC)}] (4). Complex 4 was also prepared in high yield from the reaction of 2 with strong bases (potassium tert-butoxide or potassium hexamethyldisilazane), via the initial formation of the complex [IrI(cod)(CH(NHC)CHC(NHC))] (5), which contains a coordinated NHC moiety and a free carbene arm, followed by subsequent hydrolysis of the latter. The bis(imidazolium) salt 1 can be deprotonated by strong bases to form the bis(carbene) ligand C(NHC)CHC(NHC) (6), which readily reacts with [Ir(μ-Cl)(cod)](2) to give the dinuclear complex [{IrI(cod)}(2)(μ-C(NHC)CHC(NHC))] (7), in which the N-heterocyclic bis(carbene) ligand bridges the two metals through the carbene carbon atoms.
    Dalton Transactions 11/2011; 41(2):636-43. · 3.81 Impact Factor