Article

The blockage of the high-affinity lysine binding sites of plasminogen by EACA significantly inhibits prourokinase-induced plasminogen activation.

Institute of Molecular Medicine, Nanjing University, 210093, Nanjing, PR China.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 05/2002; 1596(2):182-92. DOI: 10.1016/S0167-4838(02)00233-9
Source: PubMed

ABSTRACT Prourokinase-induced plasminogen activation is complex and involves three distinct reactions: (1) plasminogen activation by the intrinsic activity of prourokinase; (2) prourokinase activation by plasmin; (3) plasminogen activation by urokinase. To further understand some of the mechanisms involved, the effects of epsilon-aminocaproic acid (EACA), a lysine analogue, on these reactions were studied. At a low range of concentrations (10-50 microM), EACA significantly inhibited prourokinase-induced (Glu-/Lys-) plasminogen activation, prourokinase activation by Lys-plasmin, and (Glu-/Lys-) plasminogen activation by urokinase. However, no inhibition of plasminogen activation by Ala158-prourokinase (a plasmin-resistant mutant) occurred. Therefore, the overall inhibition of EACA on prourokinase-induced plasminogen activation was mainly due to inhibition of reactions 2 and 3, by blocking the high-affinity lysine binding interaction between plasmin and prourokinase, as well as between plasminogen and urokinase. These findings were consistent with kinetic studies which suggested that binding of kringle 1-4 of plasmin to the N-terminal region of prourokinase significantly promotes prourokinase activation, and that binding of kringle 1-4 of plasminogen to the C-terminal lysine158 of urokinase significantly promotes plasminogen activation. In conclusion, EACA was found to inhibit, rather than promote, prourokinase-induced plasminogen activation due to its blocking of the high-affinity lysine binding sites on plasmin(ogen).

0 Bookmarks
 · 
55 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Consumption of a plant-based diet has been associated with prevention of the development and progression of cancer. We have developed strategies to inhibit cancer by increasing the stability and integrity of connective tissue as the common mechanisms used by all types of cancer cells for their development and spread. This can be achieved naturally through the synergistic effects of selected nutrients, such as lysine, proline, ascorbic acid and green tea extract (NM). This micronutrient mixture has exhibited anticancer activity in vivo and in vitro in a large variety of cancer cell lines by simultaneously affecting several key mechanisms invoved in cancer. Among them it was effective in inhibition of cancer cell growth, MMP secretion, invasion and metastasis. It inhibited cellular MMP secretion and had anti-angiogenic and pro-apoptotic effects. We investigated the effect of NM on bladder cancer, which is associated with a high rate of recurrence, even when treated in situ, and poor prognosis once the cancer has metastasized. The effect of NM on human bladder cancer cells T-24 was studied in vitro by measuring: cell proliferation, MMP expression, Matrigel invasion, cell migration, apoptosis, and inflammatory protein expression Cox-2 and iNOS. Human bladder cancer cells T-24 (ATCC) were grown in McCoy medium supplemented with 10% FBS, penicillin (100 U/ml) and streptomycin (100 mg/ml) in 24-well tissue culture plates. At near confluence, the cells were treated with NM dissolved in media and tested at 0, 10, 100, 500, and 1000 μg/ml in triplicate at each dose. Cells were also treated with PMA 200 ng/ml to study enhanced expression of MMP-9. Cell proliferation was evaluated by MTT assay, MMP expression by gelatinase zymography, migration by scratch test, invasion through Matrigel, morphology by H&E staining, apoptosis by live-green caspase, and Cox-2 and iNOS by Western blot. NM showed no significant antiproliferative effect on human bladder cancer cell growth but induced apoptosis in a dose-dependent manner. NM inhibited the T-24 cell expression of MMP-2 and –9 in a The exclusive license for this PDF is limited to personal printing only. No part of this digital document may be reproduced, stored in a retrieval system or transmitted commercially in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pediatric sarcomas are highly aggressive tumors that are characterized by high levels of matrix metalloproteinase (MMP)-2 and -9 secretions that degrade the ECM and basement membrane, allowing cancer cells to spread to distal organs. Proteases play a key role in tumor cell invasion and metastasis by digesting the basement membrane and ECM components. Strong clinical and experimental evidence demonstrates association of elevated levels of u-PA and MMPs with cancer progression, metastasis and shortened patient survival. MMP activities are regulated by specific tissue inhibitors of metalloproteinases (TIMPs). Our main objective was to study the effect of a nutrient mixture (NM) on activity of u-PA, MMPs and TIMPs in various human pediatric sarcomas. Human osteosarcoma MNNG-HOS, osteosarcoma U-2OS and rhabdomyosarcoma RD cell lines (ATCC) were cultured in their respective media and treated at confluence with NM at 0, 50, 100, 250, 500 and 1,000 µg/ml. Analysis of u-PA activity was carried out by fibrin zymography, MMPs by gelatinase zymography and TIMPs by reverse zymography. All sarcoma cell lines studied expressed u-PA, which was inhibited by NM in a dose-dependent manner. On gelatinase zymography, osteosarcoma MNNG-HOS showed a band corresponding to MMP-2 and induction of MMP-9 with PMA (100 ng/ml) treatment. U-2OS osteosarcoma cells showed strong bands corresponding to inactive MMP-2 and MMP-9 and faint bands corresponding to active MMP-2 and MMP-9 dimer; PMA treatment enhanced MMP-9 and MMP-9 dimer activity. Rhabdomyosarcoma showed MMP-2 and faint MMP-9 bands; PMA treatment enhanced MMP-9 expression. NM inhibited their expression in a dose-dependent manner. Activity of TIMPs was upregulated by NM in all cancer cell lines in a dose‑dependent manner. Analysis revealed a positive correlation between u-PA and MMPs and a negative correlation between u-PA/MMPs and TIMPs. These findings suggest the therapeutic potential of NM in treatment of pediatric sarcomas.
    International Journal of Oncology 07/2013; · 2.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hyperfibrinolysis, a known complication of liver surgery and orthotopic liver transplantation (OLT), plays a significant role in blood loss. This fact justifies the use of antifibrinolytic drugs during these procedures. Two groups of drug namely lysine analogues [epsilon aminocaproic acid (EACA) and tranexamic acid (TA)] and serine-protease-inhibitors (aprotinin) are frequently used for this purpose. But uniform data or guidelines on the type of antifibrinolytic drugs to be used, their indications and correct dose, is still insufficient. Antifibrinolytics behave like a double-edged sword. On one hand, there are benefits of less transfusion requirements but on the other hand there is potential complication like thromboembolism, which has been reported in several studies. We performed a systematic search in PubMed and Cochrane Library, and we included studies wherein antifibrinolytic drugs (EACA, TA, or aprotinin) were compared with each other or with controls/placebo. We analysed factors like intraoperative red blood cell and fresh frozen plasma requirements, the perioperative incidence of hepatic artery thrombosis, venous thromboembolic events and mortality. Among the three drugs, EACA is least studied. Use of extensively studied drug like aprotinin has been restricted because of its side effects. Haemostatic effect of aprotinin and tranexamic acid has been comparable. However, proper patient selection and individualized treatment for each of them is required. Purpose of this review is to study various clinical trials on antifibrinolytic drugs and address the related issues like benefits claimed and associated potential complications.
    Indian journal of anaesthesia 11/2010; 54(6):489-95.