The blockage of the high-affinity lysine binding sites of plasminogen by EACA significantly inhibits prourokinase-induced plasminogen activation.

Institute of Molecular Medicine, Nanjing University, 210093, Nanjing, PR China.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 05/2002; 1596(2):182-92. DOI: 10.1016/S0167-4838(02)00233-9
Source: PubMed

ABSTRACT Prourokinase-induced plasminogen activation is complex and involves three distinct reactions: (1) plasminogen activation by the intrinsic activity of prourokinase; (2) prourokinase activation by plasmin; (3) plasminogen activation by urokinase. To further understand some of the mechanisms involved, the effects of epsilon-aminocaproic acid (EACA), a lysine analogue, on these reactions were studied. At a low range of concentrations (10-50 microM), EACA significantly inhibited prourokinase-induced (Glu-/Lys-) plasminogen activation, prourokinase activation by Lys-plasmin, and (Glu-/Lys-) plasminogen activation by urokinase. However, no inhibition of plasminogen activation by Ala158-prourokinase (a plasmin-resistant mutant) occurred. Therefore, the overall inhibition of EACA on prourokinase-induced plasminogen activation was mainly due to inhibition of reactions 2 and 3, by blocking the high-affinity lysine binding interaction between plasmin and prourokinase, as well as between plasminogen and urokinase. These findings were consistent with kinetic studies which suggested that binding of kringle 1-4 of plasmin to the N-terminal region of prourokinase significantly promotes prourokinase activation, and that binding of kringle 1-4 of plasminogen to the C-terminal lysine158 of urokinase significantly promotes plasminogen activation. In conclusion, EACA was found to inhibit, rather than promote, prourokinase-induced plasminogen activation due to its blocking of the high-affinity lysine binding sites on plasmin(ogen).

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Consumption of a plant-based diet has been associated with prevention of the development and progression of cancer. We have developed strategies to inhibit cancer by increasing the stability and integrity of connective tissue as the common mechanisms used by all types of cancer cells for their development and spread. This can be achieved naturally through the synergistic effects of selected nutrients, such as lysine, proline, ascorbic acid and green tea extract (NM). This micronutrient mixture has exhibited anticancer activity in vivo and in vitro in a large variety of cancer cell lines by simultaneously affecting several key mechanisms invoved in cancer. Among them it was effective in inhibition of cancer cell growth, MMP secretion, invasion and metastasis. It inhibited cellular MMP secretion and had anti-angiogenic and pro-apoptotic effects. We investigated the effect of NM on bladder cancer, which is associated with a high rate of recurrence, even when treated in situ, and poor prognosis once the cancer has metastasized. The effect of NM on human bladder cancer cells T-24 was studied in vitro by measuring: cell proliferation, MMP expression, Matrigel invasion, cell migration, apoptosis, and inflammatory protein expression Cox-2 and iNOS. Human bladder cancer cells T-24 (ATCC) were grown in McCoy medium supplemented with 10% FBS, penicillin (100 U/ml) and streptomycin (100 mg/ml) in 24-well tissue culture plates. At near confluence, the cells were treated with NM dissolved in media and tested at 0, 10, 100, 500, and 1000 μg/ml in triplicate at each dose. Cells were also treated with PMA 200 ng/ml to study enhanced expression of MMP-9. Cell proliferation was evaluated by MTT assay, MMP expression by gelatinase zymography, migration by scratch test, invasion through Matrigel, morphology by H&E staining, apoptosis by live-green caspase, and Cox-2 and iNOS by Western blot. NM showed no significant antiproliferative effect on human bladder cancer cell growth but induced apoptosis in a dose-dependent manner. NM inhibited the T-24 cell expression of MMP-2 and –9 in a The exclusive license for this PDF is limited to personal printing only. No part of this digital document may be reproduced, stored in a retrieval system or transmitted commercially in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The highly aggressive adult sarcomas are characterized by high levels of matrix metalloproteinase (MMP)-2 and -9, which play crucial roles in tumor invasion and metastasis by degradation of the extracellular membrane leading to cancer cell spread to distal organs. We examined the effect of cytokines, mitogens, inducers and inhibitors on MMP-2 and MMP-9 secretion in chondrosarcoma (SW-1353), fibrosarcoma (HT-1080), liposarcoma (SW-872) and synovial sarcoma (SW-982) cell lines. The selected compounds included natural cytokines and growth factors, as well as chemical compounds applied in therapy of sarcoma and natural compounds that have demonstrated anticancer therapeutic potential. MMP-2 and MMP-9 secretions were analyzed by gelatinase zymography following 24-h exposure to the tested agents and quantitated by densitometry. Fibrosarcoma, chondrosarcoma, liposarcoma and synovial sarcoma showed bands corresponding to MMP-2 and MMP-9 with dose-dependent enhancement of MMP-9 with phorbol 12-myristate 13-acetate (PMA) treatment. In chondrosarcoma cells, tumor necrosis factor (TNF)-α had a stimulatory effect on MMP-9 and insignificant effect on MMP-2 and interleukin (IL)-1β stimulated MMP-9 and MMP-2. In fibrosarcoma and liposarcoma cells, TNF-α had a profound stimulatory effect on MMP-9, but no effect on MMP-2 and in synovial sarcoma an inhibitory effect on MMP-2 and no effect on MMP-9. IL-1β had a slight inhibitory effect on fibrosarcoma, liposarcoma and synovial sarcoma MMP-2 and MMP-9 except for MMP-9 in synovial sarcoma which showed slight stimulation. Lipopolysaccharide (LPS) stimulated expression of MMP-2 in fibrosarcoma and chondrosarcoma while inhibited it in liposarcoma. Doxycycline, epigallocatechin gallate and the nutrient mixture inhibited MMP-2 and MMP-9 in all cell lines. Actinomycin-D, cyclohexamide, retinoic acid, and dexamethasone inhibited MMP-2 and -9 in chondrosarcoma and fibrosarcoma cells. Our results show that cytokines, mitogens, inducers and inhibitors have an up or down regulatory effect on MMP-2 and MMP-9 expression in adult sarcoma cell lines, suggesting these agents may be effective strategies to treat these cancers.
    International Journal of Oncology 09/2013; · 2.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The incidence of hepatocellular carcinoma (HCC), once thought to be a rare tumor in North America, has rapidly increased in recent years in the United States. Current treatment modalities to halt the progression of this disease are only marginally effective. The mainstay treatment is liver transplantation, which is often confronted with donor shortage. Invasion, metastasis and recurrence contribute to the high mortality rate of this disease. Matrix metalloproteinases (MMPs) that degrade the extracellular matrix (ECM) have been associated with the progression, invasion and metastasis of the disease. We have developed strategies to strengthen the ECM collagen and inhibit MMPs through micronutrients such as lysine, proline and ascorbic acid. Addition of epigallocatechin gallate or green tea extract to these micronutrients synergistically enhanced anti-carcinogenic activity in HepG2 cells. Addition of certain other micronutrients, such as N-acetylcysteine, selenium, copper and zinc (NM) synergistically enhanced the anticancer activity of the mixture in a model of hepatocellular carcinoma using HepG2 cells. In vitro studies using HepG2 demonstrated that NM was very effective in inhibiting cell proliferation (by MTT assay), MMPs secretion (by gelatinase zymography), cell invasion (through Matrigel) and induction of apoptosis (by live green caspase). In addition, NM was shown to down-regulate urokinase plasminogen activator (by fibrin zymography) and up-regulate tissue inhibitors of metalloproteinases (by reverse zymography) in another HCC cell line, SK-Hep-1. MMP-2 and MMP-9 activities were further modulated by phorbol 12-myristate 13-acetate (PMA) induction and inhibited by NM. In previous studies, NM inhibited Sk-Hep-1 xenografts in nude mice and also inhibited hepatic metastasis of B16FO melanoma cells. Our results suggest that NM is an excellent candidate for therapeutic use in the treatment HCC by inhibiting critical parameters in cancer development and progression, such as proliferation, invasion and metastasis, and by inducing apoptosis.
    Cancers. 01/2012; 4(2):323-39.