Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression

Kimmel Cancer Center, Jefferson Medical College, 233 South 10th Street, Philadelphia, PA 19107, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 06/2002; 99(10):6955-60. DOI: 10.1073/pnas.102181599
Source: PubMed


The TCL1 gene at 14q32.1 is involved in chromosomal translocations and inversions in mature T cell leukemias. These leukemias are classified either as T prolymphocytic leukemias, which occur very late in life, or as T chronic lymphocytic leukemias, which often arise in patients with ataxia telangiectasia (AT) at a young age. In transgenic animals, the deregulated expression of TCL1 leads to mature T cell leukemia, demonstrating the role of TCL1 in the initiation of malignant transformation in T cell neoplasia. Expression of high levels of Tcl1 have also been found in a variety of human tumor-derived B cell lines ranging from pre-B cell to mature B cell. Here we describe the phenotype of transgenic mice, E mu-TCL1, established with TCL1 under the control of a V(H) promoter-Ig(H)-E mu enhancer to target TCL1 expression to immature and mature B cells. Flow cytometric analysis reveals a markedly expanded CD5(+) population in the peritoneal cavity of E mu-TCL1 mice starting at 2 mo of age that becomes evident in the spleen by 3-5 mo and in the bone marrow by 5-8 mo. Analysis of Ig gene rearrangements indicates monoclonality or oligoclonality in these populations, suggesting a preneoplastic expansion of CD5(+) B cell clones, with the elder mice eventually developing a chronic lymphocytic leukemia (CLL)-like disorder resembling human B-CLL. Our findings provide an animal model for CLL, the most common human leukemia, and demonstrate that deregulation of the Tcl1 pathway plays a crucial role in CLL pathogenesis.

Download full-text


Available from: George A Calin,
  • Source
    • "Another study showing that overexpressed PTPN22 positively regulates Akt activation in CLL cells by affecting the ability of Lyn to phosphorylate CD22 and recruit SHIP-1 [106] further substantiates a role for negative signals in CLL cell survival. Finally, a recently published abstract has provided support for Lyn-mediated negative signaling in CLL pathogenesis and reported that disease development is inhibited in the Tcl-1 transgenic mouse model of CLL, a model that closely mimics UM-CLL in humans [107, 108], when Lyn is deleted [109]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic lymphocytic leukaemia (CLL) is an incurable malignancy of mature B cells. CLL is important clinically in Western countries because of its commonality and because of the significant morbidity and mortality associated with the progressive form of this incurable disease. The B cell receptor (BCR) expressed on the malignant cells in CLL contributes to disease pathogenesis by providing signals for survival and proliferation, and the signal transduction pathway initiated by engagement of this receptor is now the target of several therapeutic strategies. The purpose of this review is to outline current understanding of the BCR signal cascade in normal B cells and then question whether this understanding applies to CLL cells. In particular, this review studies the phenomenon of anergy in CLL cells, and whether certain adaptations allow the cells to overcome anergy and allow full BCR signaling to take place. Finally, this review analyzes how BCR signals can be therapeutically targeted for the treatment of CLL.
    07/2014; 2014:208928. DOI:10.1155/2014/208928
  • Source
    • "Our own studies indicate significant apoptosis of CLL specimens with the HDACi MS-275. Studies in vivo have been reported in Tcl1 transgenic mice that develop a disease similar to CLL patients with elevated B cells, splenomegaly and infiltration of B cells in various organs [52]. The activity of HDACi AR-42 was tested in a Tcl1 transplant model and treated mice showed reduction in peripheral leukocyte counts and survived longer [53]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The tumor suppressor gene E-cadherin gene is frequently silenced in chronic lymphocytic leukemia (CLL) cells and results in wnt-pathway activation. We analyzed the role of histone epigenetic modifications in E-cadherin gene silencing. CLL specimens were treated with histone deacetylase inhibitor (HDACi) MS-275 and analyzed for E-cadherin expression with western blot and RT-PCR analysis. The downstream effects of HDACi treated leukemic cells were studied by analyzing the effect on wnt-pathway signaling. HDACi induced alterations in E-cadherin splicing were investigated by transcript specific real time PCR analysis. Treatment of CLL specimens with histone deacetylase inhibitors (HDACi) treatment resulted in an increase of the E-cadherin RNA transcript (5 to 119 fold increase, n=10) in eight out of ten CLL specimens indicating that this gene is down regulated by histone hypoacetylation in a majority of CLL specimens. The E-cadherin re-expression in CLL specimens was noted by western blot analysis as well. Besides epigenetic silencing another mechanism of E-cadherin inactivation is aberrant exon 11 splicing resulting in an alternatively spliced transcript that lacks exon 11 and is degraded by the non-sense mediated decay (NMD) pathway. Our chromatin immunoprecipitation experiments show that HDACi increased the acetylation of histones H3 and H4 in the E-cadherin promoter region. This also affected the E-cadherin exon 11 splicing pattern as HDACi treated CLL specimens preferentially expressed the correctly spliced transcript and not the exon 11 skipped aberrant transcript. The re-expressed E- cadherin binds to β-catenin with inhibition of the active wnt-beta-catenin pathway in these cells. This resulted in a down regulation of two wnt target genes, LEF and cyclinD1 and the wnt pathway reporter. The E-cadherin gene is epigenetically modified and hypoacetylated in CLL leukemic cells. Treatment of CLL specimens with HDACi MS-275 activates transcription from this silent gene with expression of more correctly spliced E-cadherin transcripts as compared to the aberrant exon11 skipped transcripts that in turn inhibits the wnt signaling pathway. The data highlights the role of epigenetic modifications in altering gene splicing patterns.
    BMC Cancer 02/2013; 13(1):88. DOI:10.1186/1471-2407-13-88 · 3.36 Impact Factor
  • Source
    • "TCL1tg) show a clonal expansion of CD5 + B cells and die of a CLL-like disease (Bichi et al., 2002 "
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor cell survival critically depends on heterotypic communication with benign cells in the microenvironment. Here, we describe a survival signaling pathway activated in stromal cells by contact to B cells from patients with chronic lymphocytic leukemia (CLL). The expression of protein kinase C (PKC)-βII and the subsequent activation of NF-κB in bone marrow stromal cells are prerequisites to support the survival of malignant B cells. PKC-β knockout mice are insusceptible to CLL transplantations, underscoring the in vivo significance of the PKC-βII-NF-κB signaling pathway in the tumor microenvironment. Upregulated stromal PKC-βII in biopsies from patients with CLL, acute lymphoblastic leukemia, and mantle cell lymphoma suggests that this pathway may commonly be activated in a variety of hematological malignancies.
    Cancer cell 01/2013; 23(1):77-92. DOI:10.1016/j.ccr.2012.12.003 · 23.52 Impact Factor
Show more