Article

Identification of novel adhesins from Group B streptococci by use of phage display reveals that C5a peptidase mediates fibronectin binding.

Division of Infectious Disease, Children's Hospital and Regional Medical Center and University of Washington, Seattle 98105, USA.
Infection and Immunity (Impact Factor: 4.16). 07/2002; 70(6):2869-76. DOI: 10.1128/IAI.70.6.2869-2876.2002
Source: PubMed

ABSTRACT Group B streptococci (GBS) are a major cause of pneumonia, sepsis, and meningitis in newborns and infants. GBS initiate infection of the lung by colonizing mucosal surfaces of the respiratory tract; adherence of the bacteria to host cells is presumed to be the initial step in and prerequisite for successful colonization (G. S. Tamura, J. M. Kuypers, S. Smith, H. Raff, and C. E. Rubens, Infect. Immun. 62:2450-2458, 1994). We have performed a genome-wide screen to identify novel genes of GBS that mediate adherence to fibronectin. A shotgun phage display library was constructed from chromosomal DNA of a serotype Ia GBS strain and affinity selected on immobilized fibronectin. DNA sequence analysis of different clones identified 19 genes with homology to known bacterial adhesin genes, virulence genes, genes involved in transport or metabolic processes, and genes with yet-unknown function. One of the isolated phagemid clones showed significant homology to the gene (scpB) for the GBS C5a peptidase, a surface-associated serine protease that specifically cleaves the complement component C5a, a chemotaxin for polymorphonuclear leukocytes. In this work we have demonstrated that affinity-purified recombinant ScpB and a peptide ScpB fragment (ScpB-PDF), similar to the peptide identified in the phagemid, bound fibronectin in a concentration-dependent manner. Adherence assays to fibronectin were performed, comparing an isogenic scpB mutant to the wild-type strain. Approximately 50% less binding was observed with the mutant than with the wild-type strain. The mutant phenotype could be fully restored by in trans complementation of the mutant with the cloned wild-type scpB gene, providing further evidence for the role of ScpB in fibronectin adherence. Our results suggest that C5a peptidase is a bifunctional protein, which enzymatically cleaves C5a and mediates adherence to fibronectin. Since binding of fibronectin has been implicated in attachment and invasion of eukaryotic cells by streptococci, our results may imply a second important role for this surface protein in the pathogenesis of GBS infections.

Full-text

Available from: Christiane Beckmann, Apr 19, 2014
0 Followers
 · 
92 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Group B Streptococcus (GBS) is a leading cause of neonatal sepsis, pneumonia and meningitis, and is responsible for a rising number of severe invasive infections in adults. For all disease manifestations, colonisation is a critical first step. GBS has frequently been isolated from the oropharynx of neonates and adults. However, little is understood about the mechanisms of GBS colonisation at this site. In this study it is shown that three GBS strains (COH1, NEM316, 515) have capacity to adhere to human salivary pellicle. Heterologous expression of GBS pilus island (PI) genes in Lactococcus lactis to form surface-expressed pili demonstrated that GBS PI-2a and PI-1 pili bound glycoprotein-340 (gp340), a component of salivary pellicle. By contrast, PI-2b pili did not interact with gp340. The variation was attributable to differences in capacities for backbone and ancillary protein subunits of each pilus to bind gp340. Furthermore, while GBS strains were aggregated by fluid-phase gp340, this mechanism was not mediated by pili, which displayed specificity for immobilised gp340. Thus pili may enable GBS to colonise the soft and hard tissues of the oropharynx, while evading an innate mucosal defence, with implications for risk of progression to severe diseases such as meningitis and sepsis. Copyright © 2014. Published by Elsevier Masson SAS.
    Microbes and Infection 01/2015; 130(5). DOI:10.1016/j.micinf.2014.12.013 · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Since 2009, large-scale Streptococcus agalactiae infections have broken out in cultured tilapia farms in China, resulting in considerable economic losses. Screening of the surface proteins is required to identify virulence factors or protective antigens involved in piscine S.agalactiae infections in tilapia. Pre-absorbed immunoproteomics method (PAIM) is a useful method previously established in our laboratory for identifying bacterial surface proteins.ResultsA serine-rich repeat protein family 1 (Srr-1), designated XF, was identified by PAIM in piscine S. agalactiae isolate GD201008-001. To investigate the role of XF in the pathogenesis of piscine S. agalactiae, an isogenic xf mutant strain (¿xf) and a complemented strain (C¿xf) were successfully constructed. The ¿xf mutant and C¿xf showed no significant differences in growth characteristics and adherence to HEp-2 cells compared with the wild-type strain. However the 50% lethal dose of ¿xf was increased (4-fold) compared with that of the parental strain in a zebrafish infection model.Conclusions The findings demonstrated that XF is a virulence-related, highly immunoreactive surface protein and is involved in the pathogenicity of S. agalactiae infections in fish.
    BMC Veterinary Research 10/2014; 10(1):259. DOI:10.1186/s12917-014-0259-7 · 1.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proteases are enzymes that catalyse hydrolysis of peptide bonds thereby controlling the shape, size, function, composition, turnover and degradation of other proteins. In microbes, proteases are often identified as important virulence factors and as such have been targets for novel drug design. It is emerging that some proteases possess additional non-proteolytic functions that play important roles in host epithelia adhesion, tissue invasion, and in modulating immune responses. These additional "moonlighting" functions have the potential to obfuscate data interpretation and have implications for therapeutic design. Moonlighting enzymes comprise a subcategory of multifunctional proteins that possess at least two distinct biological functions on a single polypeptide chain. Presently, identifying moonlighting proteins relies heavily on serendipitous empirical data with clues arising from proteins lacking signal peptides that are localised to the cell surface. Here, we describe examples of microbial proteases with additional non-proteolytic functions, including Streptococcal SpeB, PepO and C5a peptidases, Mycoplasmal aminopeptidases, Mycobacterial chaperones, and viral papain-like proteases. We explore how these non-proteolytic functions contribute to host cell adhesion, modulate the coagulation pathway, assist in non-covalent folding of proteins, participate in cell signalling, and increase substrate repertoire. We conclude by describing how proteomics has aided in moonlighting protein discovery, focusing attention on potential moonlighters in microbial exoproteomes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
    Proteomics 03/2015; 15(5-6). DOI:10.1002/pmic.201400386 · 3.97 Impact Factor