Article

Identification of novel adhesins from Group B streptococci by use of phage display reveals that C5a peptidase mediates fibronectin binding.

Division of Infectious Disease, Children's Hospital and Regional Medical Center and University of Washington, Seattle 98105, USA.
Infection and Immunity (Impact Factor: 4.07). 07/2002; 70(6):2869-76. DOI: 10.1128/IAI.70.6.2869-2876.2002
Source: PubMed

ABSTRACT Group B streptococci (GBS) are a major cause of pneumonia, sepsis, and meningitis in newborns and infants. GBS initiate infection of the lung by colonizing mucosal surfaces of the respiratory tract; adherence of the bacteria to host cells is presumed to be the initial step in and prerequisite for successful colonization (G. S. Tamura, J. M. Kuypers, S. Smith, H. Raff, and C. E. Rubens, Infect. Immun. 62:2450-2458, 1994). We have performed a genome-wide screen to identify novel genes of GBS that mediate adherence to fibronectin. A shotgun phage display library was constructed from chromosomal DNA of a serotype Ia GBS strain and affinity selected on immobilized fibronectin. DNA sequence analysis of different clones identified 19 genes with homology to known bacterial adhesin genes, virulence genes, genes involved in transport or metabolic processes, and genes with yet-unknown function. One of the isolated phagemid clones showed significant homology to the gene (scpB) for the GBS C5a peptidase, a surface-associated serine protease that specifically cleaves the complement component C5a, a chemotaxin for polymorphonuclear leukocytes. In this work we have demonstrated that affinity-purified recombinant ScpB and a peptide ScpB fragment (ScpB-PDF), similar to the peptide identified in the phagemid, bound fibronectin in a concentration-dependent manner. Adherence assays to fibronectin were performed, comparing an isogenic scpB mutant to the wild-type strain. Approximately 50% less binding was observed with the mutant than with the wild-type strain. The mutant phenotype could be fully restored by in trans complementation of the mutant with the cloned wild-type scpB gene, providing further evidence for the role of ScpB in fibronectin adherence. Our results suggest that C5a peptidase is a bifunctional protein, which enzymatically cleaves C5a and mediates adherence to fibronectin. Since binding of fibronectin has been implicated in attachment and invasion of eukaryotic cells by streptococci, our results may imply a second important role for this surface protein in the pathogenesis of GBS infections.

0 Bookmarks
 · 
66 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Streptococcus agalactiae (group B streptococcus [GBS]) is a Gram-positive bacterium that was first recognized as a causative agent of bovine mastitis. S. agalactiae has subsequently emerged as a significant cause of human diseases. Here, we report the draft genome sequence of S. agalactiae PR06, which was isolated from a septicemic patient in a local hospital in Malaysia.
    Genome announcements. 01/2013; 1(3).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteins are the most diverse structures on bacterial surfaces; hence, they are candidates for species- and strain-specific interactions of bacteria with the host, environment, and other microorganisms. Genomics has decoded thousands of bacterial surface and secreted proteins, yet the function of most cannot be predicted because of the enormous variability and a lack of experimental data that would allow deduction of function through homology. Here, we used phage display to identify a pair of interacting extracellular proteins in the probiotic bacterium Lactobacillus rhamnosus HN001. A secreted protein, SpcA, containing two bacterial immunoglobulin-like domains type 3 (Big-3) and a domain distantly related to plant pathogen response domain 1 (PR-1-like) was identified by screening of an L. rhamnosus HN001 library using HN001 cells as bait. The SpcA-"docking" protein, SpcB, was in turn detected by another phage display library screening, using purified SpcA as bait. SpcB is a 3275-residue cell-surface protein that contains general features of large glycosylated Serine-rich adhesins/fibrils from gram-positive bacteria, including the hallmark signal sequence motif KxYKxGKxW. Both proteins are encoded by genes within a L. rhamnosus-unique gene cluster that distinguishes this species from other lactobacilli. To our knowledge, this is the first example of a secreted-docking protein pair identified in lactobacilli.
    MicrobiologyOpen. 12/2012;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Leptospira interrogans causes leptospirosis, one of the most common zoonotic diseases in the world. This pathogenic spirochete is able to bind to extracellular matrix, to express virulent factors and to cause host death. Until now, there is no effective human vaccine for the disease. Shotgun phage display genomic libraries of L. interrogans were constructed and used for in vivo biopanning in hamsters and screened for ligands able to bind to LLC-PK1 epithelial cells. In both panning procedures, clones coding for the putative lipoprotein LIC12976 were identified and, in order to confirm its adhesin activity, a recombinant protein was produced in E. coli and showed to interact with A31 fibroblasts, LLC-PK1 and Vero epithelial cells in vitro. Moreover, rLIC12976 was shown to bind to laminin, indicating an adhesin function. This protein was also detected in extracts of L. interrogans from different serovars and it was found to be conserved among pathogenic leptospires. Further, the protein was tested as vaccine candidate and immunization of hamsters with LIC12976 did not confer protection against a lethal challenge with the homologous L. interrogans serovar Copenhageni. Nevertheless, LIC12976 seems to act as an adhesin, and may be important for the host-pathogen interaction, so that its study can contribute to the understanding of the virulence mechanisms in pathogenic leptospires.
    Biochemical and Biophysical Research Communications 01/2013; · 2.41 Impact Factor

Full-text (2 Sources)

View
3 Downloads
Available from
May 27, 2014