Article

Irofulven (6-hydroxymethylacylfulvene, MGI 114)-induced apoptosis in human pancreatic cancer cells is mediated by ERK and JNK kinases.

Department of Surgery, University of Texas Health Science Center at San Antonio, 78229, USA.
Anticancer research (Impact Factor: 1.71). 01/2002; 22(2A):559-64.
Source: PubMed

ABSTRACT Pancreatic carcinoma resists chemotherapeutic mediation of apoptosis. Irofulven (MGI 114, 6-hydroxymethylacylfulvene) is a novel illudin S analogue that we have shown to induce caspase-mediated apoptosis in pancreatic carcinoma cell lines.
Westem blot analysis and kinase assays were used to demonstrate the activation of Erk 1/2 and JNK1 kinases following Irofulven administration in the presence and absence of selective kinase inhibitors.
Irofulven activates JNK1 and Erk1/2, but not p38. The addition of the MAPK inhibitors, SB202190 and PD98059 (targeting JNK1 and Erk1/2 activation, respectively), prevents kinase activation and blocks Irofulven-induced activation of caspases -3, -7, -8 and -9. Blockade of either JNK1 or Erk1/2 results in a 50% decrease in apoptosis in MiaPaCa-2 cells treated with Irofulven.
Our data demonstrated that JNK1 and Erk1/2 are activated by Irofulven treatment and that blockade of either MAPK subfamily decreases apoptosis by rendering Irofulven incapable of inducing caspase activation.

0 Bookmarks
 · 
157 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In culture, cerebellar granule neurons die of apoptosis in serum-free media containing a physiologic level of K(+) but survive in a depolarizing concentration of K(+) or when insulin-like growth factor 1 (IGF-1) is added. Both Akt/PKB activation and caspase-3 inhibition were implicated as the underlying neuroprotective mechanisms. The duration of high K(+), however, induced survival effects that outlasted its transient activation of Akt, and granule neurons derived from caspase-3 knockout mice died to the same extent as did those from wild-type mice, suggesting that additional mechanisms are involved. To delineate these survival mechanisms, we compared the activities of two major survival pathways after high K(+)-induced depolarization or IGF-1 stimulation. Although IGF-1 promoted neuronal survival by activating its tyrosine kinase receptor, high K(+) depolarization provided the same effect by increasing the Ca(2+) influx through the L Ca(2+) channel. Moreover, high K(+)-induced depolarization resulted in sustained activation of MAP kinase, whereas IGF-1 activated Akt in 4 hr. Inhibition of MEK (MAP kinase kinase) by either PD98059 or UO126 abolished the protective effect of high K(+)-induced depolarization, but not that of IGF-1, suggesting that activation of the MAP kinase pathway is necessary for high K(+) neuroprotective effects. We demonstrated also that high K(+)-induced depolarization, but not IGF-1, increased phosphorylation of cAMP-response element-binding protein (CREB) and protein synthesis, both of which can be blocked by UO126. Overall, our findings suggested that high K(+)-induced depolarization, unlike IGF-1, promoted neuronal survival via activating MAP kinase, possibly by increasing CREB-dependent transcriptional activation of specific proteins that promote neuronal survival.
    Journal of Neuroscience Research 04/2004; 75(6):794-806. · 2.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The novel agent Irofulven (HMAF, NSC 683863) has demonstrated significant antitumor activity against solid tumors in various xenograft models and human clinical trials. The antitumor potential of combining irofulven with 72 different anti-metabolite, enzyme inhibiting, and miscellaneous agents was investigated in this study. The human lung carcinoma MV522 cell line and its corresponding xenograft model were used to evaluate the activity of irofulven in combination with these different agents. Irofulven in combination with select anti-metabolites, notably cytidine or adenine-derived agents, displayed strong synergistic activity in both in vitro and in vivo studies. Agents demonstrating strong synergistic interaction with irofulven included gemcitabine, cyclocytidine, cytarabine, fludarabine phosphate, cladribine, and 5-fluorouracil. Other anti-metabolites, enzyme inhibitors, and a variety of miscellaneous agents failed to interact beneficially when administered in combination with irofulven. The therapeutic activity of irofulven is enhanced considerably when irofulven is combined with select anti-metabolite agents, and further clinical evaluation of these combinations is warranted. The synergistic interaction with these combinations may stem from a variety of actions including inhibition of the nucleotide excision repair (NER) pathway, topoisomerase I activity, and caspase-dependent and independent induction of apoptosis.
    Investigational New Drugs 02/2008; 26(5):407-15. · 3.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Once thought to be a relatively untreatable disease, pancreatic cancer has recently become a focus of intense clinical research. The systemic administration of gemcitabine (Gemzar) is currently considered the standard first-line treatment for patients with advanced disease. While treatment with gemcitabine has been shown to result in both clinical benefit and prolongation of survival, objective tumor responses are relatively uncommon and median survival times remain short. Several recent efforts have therefore focused on evaluating chemotherapy regimens in which gemcitabine is combined with other cytotoxic drugs. While randomized trials have now confirmed that such combinations are associated with higher response rates, they have not yet clearly demonstrated that combination therapy results in a survival advantage. Increasingly, attention has turned to a number of novel chemotherapeutic and biologic agents that appear promising and are likely to play an important future role in the treatment of patients with this disease.
    Expert Review of Anti-infective Therapy 11/2003; 3(5):729-39. · 2.07 Impact Factor