Article

Sensing and repairing DNA double-strand breaks.

Wellcome Trust and Cancer Research UK Institute of Cancer and Developmental Biology, Tennis Court Road, Cambridge CB2 1QR, UK.
Carcinogenesis (Impact Factor: 5.27). 06/2002; 23(5):687-96. DOI: 10.1093/carcin/23.5.687
Source: PubMed

ABSTRACT The DNA double-strand break (DSB) is the principle cytotoxic lesion for ionizing radiation and radio-mimetic chemicals but can also be caused by mechanical stress on chromosomes or when a replicative DNA polymerase encounters a DNA single-strand break or other type of DNA lesion. DSBs also occur as intermediates in various biological events, such as V(D)J recombination in developing lymphoid cells. Inaccurate repair or lack of repair of a DSB can lead to mutations or to larger-scale genomic instability through the generation of dicentric or acentric chromosomal fragments. Such genome changes may have tumourigenic potential. In other instances, DSBs can be sufficient to induce apoptosis. Because of the threats posed by DSBs, eukaryotic cells have evolved complex and highly conserved systems to rapidly and efficiently detect these lesions, signal their presence and bring about their repair. Here, I provide an overview of these systems, with particular emphasis on the two major pathways of DSB repair: non-homologous end-joining and homologous recombination. Inherited or acquired defects in these pathways may lead to cancer or to other human diseases, and may affect the sensitivity of patients or tumour cells to radiotherapy and certain chemotherapies. An increased knowledge of DSB repair and of other DNA DSB responses may therefore provide opportunities for developing more effective treatments for cancer.

1 Follower
 · 
107 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA double-strand breaks (DSBs) are repaired by two main pathways: nonhomologous end-joining and homologous recombination (HR). Repair pathway choice is thought to be determined by cell cycle timing and chromatin context. Nucleoli, prominent nuclear subdomains and sites of ribosome biogenesis, form around nucleolar organizer regions (NORs) that contain rDNA arrays located on human acrocentric chromosome p-arms. Actively transcribed rDNA repeats are positioned within the interior of the nucleolus, whereas sequences proximal and distal to NORs are packaged as heterochromatin located at the nucleolar periphery. NORs provide an opportunity to investigate the DSB response at highly transcribed, repetitive, and essential loci. Targeted introduction of DSBs into rDNA, but not abutting sequences, results in ATM-dependent inhibition of their transcription by RNA polymerase I. This is coupled with movement of rDNA from the nucleolar interior to anchoring points at the periphery. Reorganization renders rDNA accessible to repair factors normally excluded from nucleoli. Importantly, DSBs within rDNA recruit the HR machinery throughout the cell cycle. Additionally, unscheduled DNA synthesis, consistent with HR at damaged NORs, can be observed in G1 cells. These results suggest that HR can be templated in cis and suggest a role for chromosomal context in the maintenance of NOR genomic stability. © 2015 van Sluis and McStay; Published by Cold Spring Harbor Laboratory Press.
    Genes & Development 06/2015; 29. DOI:10.1101/gad.260703.115 · 12.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bio-oils, which are multicomponent mixtures, were produced from two different biomass (rice straw (rice oil) and sawdust of oak tree (oak oil)) by using the slow pyrolysis process, and chemical compositional screening with GC-MS detected several hazardous compounds in both bio-oil samples. The two bio-oils vary in their chemical compositional nature and concentrations. To know the actual hazard potentialities of these bio-oils, toxicological assessments were carried out in a comparative approach by using in vitro (Jurkat T and HepG2 cell) as well as in vivo (Caenorhabditis elegans) systems. A dose-dependent increase in cytotoxicity, cell death (apoptosis), and genotoxicity were observed in cultured cell systems. Similarly, the in vivo system, C. elegans also displayed a dose-dependent decrease in survival. It was found that in comparison with rice oil, oak oil displayed higher toxicity to all models systems, and the susceptibility order of the model systems were Jurkat T > HepG2 > C. elegans. Pursuing the study further toward the underlying mechanism by exploiting the C. elegans mutants screening assay, the bio-oils seem to mediate toxicity through oxidative stress and impairment of immunity. Taken together, bio-oils compositions mainly depend on the feedstock used and the pyrolysis conditions which in turn modulate their toxic potentiality. © 2013 Wiley Periodicals, Inc. Environ Toxicol, 2013.
    Environmental Toxicology 12/2014; 29(12). DOI:10.1002/tox.21871 · 2.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA damage is a significant problem in living organisms and DNA repair pathways have been evolved in different species to maintain genomic stability. Here we demonstrated the molecular function of AtMMS21, a component of SMC5/6 complex, in plant DNA damage response. Compared with wild type, the AtMMS21 mutant plants show hypersensitivity in the DNA damaging treatments by MMS, cisplatin and gamma radiation. However, mms21-1 is not sensitive to replication blocking agents hydroxyurea and aphidicolin. The expression of a DNA damage response gene PARP2 is upregulated in mms21-1 under normal condition, suggesting that this signaling pathway is constitutively activated in the mutant. Depletion of ATAXIA-TELANGIECTASIA MUTATED (ATM) in mms21-1 enhances its root growth defect phenotype, indicating that ATM and AtMMS21 may play additive roles in DNA damage pathway. The analysis of homologous recombination frequency showed that the number of recombination events is reduced in mms21-1 mutant. Conclusively, we provided evidence that AtMMS21 plays an important role in homologous recombination for DNA damage repair.
    DNA repair 05/2014; DOI:10.1016/j.dnarep.2014.04.006 · 3.36 Impact Factor

Preview

Download
1 Download