Identification of X-linked inhibitor of apoptosis-associated factor-1 as an interferon-stimulated gene that augments TRAIL Apo2L-induced apoptosis

Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 09/2002; 277(32):28504-11. DOI: 10.1074/jbc.M204851200
Source: PubMed

ABSTRACT In the course of gene array studies aimed at identifying IFN-stimulated genes associated with interferon beta (IFN-beta)-induced apoptosis, we identified X-linked inhibitor of apoptosis-associated factor-1 (XAF1) as a novel IFN-stimulated gene. XAF1 mRNA was up-regulated by IFN-alpha and IFN-beta in all cells examined. However, IFNs induced high levels of XAF1 protein predominantly in cell lines sensitive to the proapoptotic effects of IFN-beta. In apoptosis-resistant cells including WM164 melanoma, WM35 melanoma, U937 pro-monocytic leukemia, and HT1080 fibrosarcoma cells, XAF1 mRNA was strongly up-regulated but XAF1 protein was up-regulated only weakly or not at all. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a critical mediator of IFN-beta-induced apoptosis, but most melanoma cell lines were resistant to recombinant TRAIL protein. For example, A375 melanoma cells were defective in TRAIL induction by IFN-beta and were resistant to TRAIL-induced apoptosis. However, IFN-beta pretreatment sensitized them to subsequent recombinant TRAIL-induced apoptosis. A375 cells expressing XAF1 constitutively were more sensitive to TRAIL-induced apoptosis compared with empty vector-transfected cells. The degree of sensitization by XAF1 was similar to that provided by IFN pretreatment and was correlated with the level of XAF1 expressed. Furthermore, the overexpression of the zinc-finger portion of XAF1 blocked IFN-dependent sensitization of A375 melanoma cells to the proapoptotic effects of TRAIL. These results suggested that IFN-dependent induction of XAF1 strongly influenced cellular sensitivity to the proapoptotic actions of TRAIL.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1) is a tumor suppressor that is frequently inactivated in many human cancers. However, the molecular mechanism underlying its growth-inhibitory function remains largely unknown. Here, we report that XAF1 forms a positive feedback loop with p53 and acts as a molecular switch in p53-mediated cell-fate decisions favoring apoptosis over cell-cycle arrest. XAF1 binds directly to the N-terminal proline-rich domain of p53 and thus interferes with E3 ubiquitin ligase MDM2 binding and ubiquitination of p53. XAF1 stimulates homeodomain-interacting protein kinase 2 (HIPK2)-mediated Ser-46 phosphorylation of p53 by blocking E3 ubiquitin ligase Siah2 interaction with and ubiquitination of HIPK2. XAF1 also steps up the termination of p53-mediated cell-cycle arrest by activating zinc finger protein 313 (ZNF313), a p21(WAF1)-targeting ubiquitin E3 ligase. XAF1 interacts with p53, Siah2, and ZNF313 through the zinc finger domains 5, 6, and 7, respectively, and truncated XAF1 isoforms preferentially expressed in cancer cells fail to form a feedback loop with p53. Together, this study uncovers a novel role for XAF1 in p53 stress response, adding a new layer of complexity to the mechanisms by which p53 determines cell-fate decisions.
    Proceedings of the National Academy of Sciences 10/2014; DOI:10.1073/pnas.1411746111 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The potent anticancer efficacy of oncolytic viruses has been verified in Clinic in recent years. Cisplatin (DDP) is one of most common chemotherapeutic drugs, but is accompanied by side effects and drug resistance. Our previous studies have shown the strategy of cancer -targeting gene-viro-therapy (CTGVT) mediated by the oncolytic virus ZD55 containing the XAF1 cDNA (ZD55-XAF1), which exhibited potent antitumor effects in various tumor cells and no apparent toxicities on normal cells. In the study, the CTGVT strategy is broadened by combining DDP with ZD55-XAF1 for growth inhibition of hepatocellular carcinoma (HCC) cells.
    Journal of Cancer Research and Clinical Oncology 09/2014; 141(3). DOI:10.1007/s00432-014-1835-8 · 3.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interferons (IFN) are cytokines secreted by vertebrate cells involved in activation of signaling pathways that direct the synthesis of antiviral genes. To gain a global understanding of antiviral genes induced by type I IFNs in salmonids, we used RNA-seq to characterize the transcriptomic changes induced by type I IFN treatment and salmon alphavirus subtype 3 (SAV-3) infection in TO-cells, a macrophage/dendritic like cell-line derived from Atlantic salmon (Salmo salar L) head kidney leukocytes. More than 23 million reads generated by RNA-seq were de novo assembled into 58098 unigenes used to generate a total of 3149 and 23289 differentially expressed genes (DEGs) from TO-cells exposed to type I IFN treatment and SAV-3 infection, respectively. Although the DEGs were classified into genes associated with biological processes, cellular components and molecular function based on gene ontology classification, transcriptomic changes reported here show upregulation of genes belonging to the canonical type I IFN signaling pathways together with a broad spectrum of antiviral genes that block virus replication in host cells. In addition, the transcriptome shows a profile of genes associated with apoptosis as well as genes that activate adaptive immunity. Further, our findings show that the profile of genes expressed by TO-cells is comparable to orthologous genes expressed by mammalian macrophages and dendritic cells in response to type I IFNs. Twenty DEGs randomly selected for qRT-PCR confirmed the validity of the transcriptomic changes detected by RNA-seq by showing that the genes upregulated by RNA-seq were also upregulated by qRT-PCR and that genes downregulated by RNA-seq were also downregulated by qRT-PCR. The de novo assembled transcriptome presented here provides a global description of genes induced by type I IFNs in TO-cells that could serve as a repository for future studies in fish cells. Transcriptome analysis shows that a large proportion of IFN genes expressed in this study are comparable to IFNs genes expressed in mammalia. In addition, the study shows that SAV-3 is a potent inducer of type I IFNs and that the responses it induces in TO-cells could serve as a model for studying IFN responses in salmonids.
    BMC Genomics 02/2015; 16(1). DOI:10.1186/s12864-015-1302-1 · 4.04 Impact Factor


Available from
Jun 3, 2014