Arterial replacement with compliant hierarchic hybrid vascular graft: biomechanical adaptation and failure.

Department of Bioengineering, National Cardiovascular Center Research Institute, Osaka, Japan.
Tissue Engineering (Impact Factor: 4.25). 05/2002; 8(2):213-24. DOI: 10.1089/107632702753724987
Source: PubMed

ABSTRACT Two types of hybrid vascular grafts were hierarchically structured with an autologous smooth muscle cell (SMC)-inoculated collagen gel layer and an endothelial cell (EC) monolayer, and wrapped with different elasomeric scaffolds. Type A graft was wrapped with poly(urethane)-nylon mesh, and type B graft was wrapped with an excimer laser-directed microporous segmented polyurethane (SPU) film as the scaffold. Type A graft was more compliant than canine carotid arteries, whereas compliance of type B graft was close to that of native arteries. After implantation into canine carotid arteries for 1 month, all type A grafts were dilated due to loosening of the mesh, resulting in loss of prelined ECs and thrombus formation. In contrast, type B grafts developed a well-organized neoarterial wall composed of a confluent EC monolayer and SMC-resided medial tissue, resulting in only slightly appreciable thrombus and minimal tissue ingrowth 6 months after implantation. Compliance of type B graft was reduced at 6 month's implantation, which is mostly due to encapsulated connective tissue formed around the graft.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Tissue engineering enables the development of fully biological vascular substitutes that restore, maintain and improve tissue function in a manner identical to natural host tissue. However the development of the appropriate preclinical evaluation techniques for the generation of fully functional tissue-engineered vascular graft (TEVG) is required to establish their safety for use in clinical trials and to test clinical effectiveness. This review gives an insight on the various preclinical studies performed in the area of tissue engineered vascular grafts highlighting the different strategies used with respect to cells and scaffolds, typical animal models used and the major in vivo evaluation studies that have been carried out. The review emphasizes the combined effort of engineers, biologists and clinicians which can take this clinical research to new heights of regenerative therapy.
    International journal of cardiology 10/2012; · 6.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was the in vitro investigation of the change in mechanical properties of a fast-degrading electro-spun polymeric scaffold for the use in soft tissue regenerative implants. Tubular scaffolds were electro-spun from a DegraPol® D30 polyesther-urethane solution (target outer diameter: 5.0 mm; scaffold wall thickness: 0.99 ± 0.18 mm). Scaffold samples were subjected to hydrolytic in vitro degradation for up to 34 days. The fiber network structure and fiber surfaces were inspected on scanning electron micrographs. Following vacuum drying and determination of mass, flat samples (9.69 ± 0.21 × 18.47 ± 2.62 mm, n = 5) underwent uni-axial tensile testing (5 load cycles, strain ε = 0 to 20%; final extension to failure) in circumferential scaffold direction after 5, 10, 14, 18, 22, 26, 30, and 34 days of degradation. Scaffold mass did not change with degradation. Maximum elastic modulus, maximum stress and associated strain were E(max) = 1.14 ± 0.23 MPa, σ(max) = 0.52 ± 0.12 MPa and ε(max) = 176.8 ± 21.9% before degradation and E(max) = 0.43 ± 0.26 MPa, σ(max) = 0.033 ± 0.028 MPa and ε(max) = 24.6 ± 3.0% after 34 days of degradation. The deterioration of mechanical properties was not reflected in the ultrastructural surface morphology of the fibers. The current exploratory study provides a basis for the development of constitutive computational models of biodegradable scaffolds with future extension of the investigation most importantly to capture mechanical effects of regenerating tissue. Future studies will include degradation in biological fluids and assessment of molecular weight for an advanced understanding of the material changes during degradation.
    Journal of Biomedical Materials Research Part B Applied Biomaterials 09/2011; 99(2):359-68. · 2.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is a significant worldwide demand for a small calibre vascular graft for use as a bypass or replacement conduit. An important feature in determining the success of a graft is the wall structure, which includes porosity, pore size and pore interconnectivity, as these play a crucial role in determining the long-term patency of a bypass graft. In this study we fabricate a small diameter (<5mm) vascular graft from polyhedral oligomeric silsesquioxane-poly(carbonate urea)urethane (POSS-PCU) via an extrusion, phase inversion method using an automated, custom built machine. Through the dispersion of a porogen, sodium bicarbonate (NaHCO(3)), in controlled concentrations (0-55%) we were able to produce grafts with well-defined pore morphologies. The impact of NaHCO(3) concentration on the structure of the graft wall and its influence on the mechanical and haemocompatibility properties are evaluated here. Scanning electron microscopy and mercury porosimetry were used to characterise graft structure. Atomic force microscopy elucidated any changes in surface morphology. The addition of NaHCO(3) improved the pore interconnectivity and increasing the concentration of NaHCO(3) led to grafts with rougher surfaces and larger pore sizes. The ultimate tensile strength and suture retention decreased with increasing concentrations of NaHCO(3), while graft compliance increased. To evaluate haemocompatibility platelets and peripheral blood mononuclear cells (PBMC) were incubated on a range of different graft samples. Platelet adhesion, PBMC surface receptor expression (CD14, CD86, CD69 and HLA-DR) and cytokine release (PF4, IL-1β, IL-6, IL-10, TNFα) were all measured. Increasing numbers of platelets adhered to grafts produced with no NaHCO(3), which exhibited a smooth surface morphology, and PBMC adherent on these grafts expressed higher levels of CD14 and CD86. Whilst the different graft samples induced varying levels of cytokine secretion in vitro, no distinct pattern suggesting a non-trivial relationship was observed.
    Acta biomaterialia 07/2011; 7(11):3857-67. · 5.09 Impact Factor