Article

Physical and functional interaction of the Arabidopsis K(+) channel AKT2 and phosphatase AtPP2CA.

Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004 Agro-M/Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Université Montpellier II, France.
The Plant Cell (Impact Factor: 9.25). 06/2002; 14(5):1133-46.
Source: PubMed

ABSTRACT The AKT2 K(+) channel is endowed with unique functional properties, being the only weak inward rectifier characterized to date in Arabidopsis. The gene is expressed widely, mainly in the phloem but also at lower levels in leaf epiderm, mesophyll, and guard cells. The AKT2 mRNA level is upregulated by abscisic acid. By screening a two-hybrid cDNA library, we isolated a protein phosphatase 2C (AtPP2CA) involved in abscisic acid signaling as a putative partner of AKT2. We further confirmed the interaction by in vitro binding studies. The expression of AtPP2CA (beta-glucuronidase reporter gene) displayed a pattern largely overlapping that of AKT2 and was upregulated by abscisic acid. Coexpression of AtPP2CA with AKT2 in COS cells and Xenopus laevis oocytes was found to induce both an inhibition of the AKT2 current and an increase of the channel inward rectification. Site-directed mutagenesis and pharmacological analysis revealed that this functional interaction involves AtPP2CA phosphatase activity. Regulation of AKT2 activity by AtPP2CA in planta could allow the control of K(+) transport and membrane polarization during stress situations.

0 Bookmarks
 · 
101 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Potassium is a major inorganic constituent of the living cell and the most abundant cation in the cytosol. It plays a role in various functions at the cell level, such as electrical neutralization of anionic charges, protein synthesis, long- and short-term control of membrane polarization, and regulation of the osmotic potential. Through the latter function, K(+) is involved at the whole-plant level in osmotically driven functions such as cell movements, regulation of stomatal aperture, or phloem transport. Thus, plant growth and development require that large amounts of K(+) are taken up from the soil and translocated to the various organs. In most ecosystems, however, soil K(+) availability is low and fluctuating, so plants have developed strategies to take up K(+) more efficiently and preserve vital functions and growth when K(+) availability is becoming limited. These strategies include increased capacity for high-affinity K(+) uptake from the soil, K(+) redistribution between the cytosolic and vacuolar pools, ensuring cytosolic homeostasis, and modification of root system development and architecture. Our knowledge about the mechanisms and signalling cascades involved in these different adaptive responses has been rapidly growing during the last decade, revealing a highly complex network of interacting processes. This review is focused on the different physiological responses induced by K(+) deprivation, their underlying molecular events, and the present knowledge and hypotheses regarding the mechanisms responsible for K(+) sensing and signalling.
    Journal of Experimental Botany 11/2013; · 5.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Potassium (K(+) ) is an essential macronutrient in plants and a lack of K(+) significantly reduces the potential for plant growth and development. By contrast, sodium (Na(+) ), while beneficial to some extent, at high concentrations it disturbs and inhibits various physiological processes and plant growth. Due to their chemical similarities, some functions of K(+) can be undertaken by Na(+) but K(+) homeostasis is severely affected by salt stress, on the other hand. Recent advances have highlighted the fascinating regulatory mechanisms of K(+) and Na(+) transport and signalling in plants. This review summarises three major topics; i) the transport mechanisms of K(+) and Na(+) from the soil to the shoot and to the cellular compartments, ii) the mechanisms through which plants sense and respond to K(+) and Na(+) availability and iii) the components involved in maintenance of K(+) /Na(+) homeostasis in plants under salt stress.
    Journal of Integrative Plant Biology 01/2014; · 3.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cloning and characterizations of plant K(+) transport systems aside from Arabidopsis have been increasing over the past decade, favored by the availability of more and more plant genome sequences. Information now available enables the comparison of some of these systems between species. In this review, we focus on three families of plant K(+) transport systems that are active at the plasma membrane: the Shaker K(+) channel family, comprised of voltage-gated channels that dominate the plasma membrane conductance to K(+) in most environmental conditions, and two families of transporters, the HAK/KUP/KT K(+) transporter family, which includes some high-affinity transporters, and the HKT K(+) and/or Na(+) transporter family, in which K(+)-permeable members seem to be present in monocots only. The three families are briefly described, giving insights into the structure of their members and on functional properties and their roles in Arabidopsis or rice. The structure of the three families is then compared between plant species through phylogenic analyses. Within clusters of ortologues/paralogues, similarities and differences in terms of expression pattern, functional properties and, when known, regulatory interacting partners, are highlighted. The question of the physiological significance of highlighted differences is also addressed.
    Journal of plant physiology 03/2014; · 2.50 Impact Factor

Full-text (2 Sources)

View
10 Downloads
Available from
May 15, 2014