Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep.

Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 07/2002; 22(11):4568-76.
Source: PubMed

ABSTRACT We found previously that damage to a cluster of sleep-active neurons (Fos-positive during sleep) in the ventrolateral preoptic nucleus (VLPO) decreases non-rapid eye movement (NREM) sleep in rats, whereas injury to the sleep-active cells extending dorsally and medially from the VLPO cluster (the extended VLPO) diminishes REM sleep. These results led us to examine whether neurons in the extended VLPO are activated during REM sleep and the connectivity of these neurons with pontine sites implicated in producing REM sleep: the laterodorsal tegmental nucleus (LDT), dorsal raphe nucleus (DRN), and locus ceruleus (LC). After periods of dark exposure that triggered enrichment of REM sleep, the number of Fos-positive cells in the extended VLPO was highly correlated with REM but not NREM sleep. In contrast, the number of Fos-positive cells in the VLPO cluster was correlated with NREM but not REM sleep. Sixty percent of sleep-active cells in the extended VLPO and 90% of sleep-active cells in the VLPO cluster in dark-treated animals contained galanin mRNA. Retrograde tracing from the LDT, DRN, and LC demonstrated more labeled cells in the extended VLPO than the VLPO cluster, and 50% of these in the extended VLPO were sleep-active. Anterograde tracing showed that projections from the extended VLPO and VLPO cluster targeted the cell bodies and dendrites of DRN serotoninergic neurons and LC noradrenergic neurons but were not apposed to cholinergic neurons in the LDT. The connections and physiological activity of the extended VLPO suggest a specialized role in the regulation of REM sleep.


Available from: Alvhild A Bjørkum, Jun 15, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: REM sleep behaviour disorder (RBD) is a parasomnia characterized by the loss of normal skeletal muscle atonia during REM sleep with prominent motor activity accompanying dreaming. The terminology relating to RBD, and mechanisms underlying REM sleep without atonia and RBD based on data in cat and rat are presented. Neuroimaging data from the few published human cases with RBD associated with structural lesions in the brainstem are presented, in which the dorsal midbrain and pons are implicated. Pharmacological manipulations which alter RBD frequency and severity are reviewed, and the data from human neuropathological studies are presented. An anatomic framework and new schema for the pathophysiology of RBD are proposed based on recent data in rat regarding the putative flip-flop switch for REM sleep control. The structure in man analogous to the subcoeruleus region in cat and sublaterodorsal nucleus in rat is proposed as the nucleus (and its associated efferent and afferent pathways) crucial to RBD pathophysiology. The association of RBD with neurological disease ('secondary RBD') is presented, with emphasis on RBD associated with neurodegenerative disease, particularly the synucleinopathies. The hypothesized pathophysiology of RBD is presented in relation to the Braak staging system for Parkinson's disease, in which the topography and temporal sequence of synuclein pathology in the brain could explain the evolution of parkinsonism and/or dementia well after the onset of RBD. These data suggest that many patients with 'idiopathic' RBD are actually exhibiting an early clinical manifestation of an evolving neurodegenerative disorder. Such patients may be appropriate for future drug therapies that affect synuclein pathophysiology, in which the development of parkinsonism and/or dementia could be delayed or prevented. We suggest that additional clinicopathological studies be performed in patients with dementia or parkinsonism, with and without RBD, as well as in patients with idiopathic RBD, to further elucidate the pathophysiology and also characterize the clinical and pathophysiological relevance of RBD in neurodegenerative disease. Furthermore, longitudinal studies in patients with idiopathic RBD are warranted to characterize the natural history of such patients and prepare for future therapeutic trials.
    Brain 12/2007; 130(Pt 11):2770-88. DOI:10.1093/brain/awm056 · 10.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: At its most basic level, the function of mammalian sleep can be described as a restorative process of the brain and body; recently, however, progressive research has revealed a host of vital functions to which sleep is essential. Although many excellent reviews on sleep behavior have been published, none have incorporated contemporary studies examining the molecular mechanisms that govern the various stages of sleep. Utilizing a holistic approach, this review is focused on the basic mechanisms involved in the transition from wakefulness, initiation of sleep and the subsequent generation of slow-wave sleep and rapid eye movement (REM) sleep. Additionally, using recent molecular studies and experimental evidence that provides a direct link to sleep as a behavior, we have developed a new model, the cellular-molecular-network model, explaining the mechanisms responsible for regulating REM sleep. By analyzing the fundamental neurobiological mechanisms responsible for the generation and maintenance of sleep-wake behavior in mammals, we intend to provide a broader understanding of our present knowledge in the field of sleep research.
    Neuroscience & Biobehavioral Reviews 02/2007; 31(5):775-824. DOI:10.1016/j.neubiorev.2007.02.004 · 10.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The primary visual pathway in albino mammals is characterized by an increased decussation of retinal ganglion cell axons at the optic chiasm and an enhanced contralateral projection to the dorsal lateral geniculate nucleus. In contrast to the primary visual pathway, little is known about the organization of retinal input to most nuclei of the subcortical visual system in albino mammals. The subcortical visual system is a large group of retinorecipient nuclei in the diencephalon and mesencephalon. These areas mediate a range of behaviors that include both circadian and acute responses to light. We used a congenic strain of albino and pigmented rats with a mutation at the c locus for albinism (Fischer 344-c/+; LaVail MM, Lawson NR (1986) Development of a congenic strain of pigmented and albino rats for light damage studies. Exp Eye Res 43:867-869) to quantitatively assess the effects of albinism on retinal projections to a number of subcortical visual nuclei including the ventral lateral hypothalamus (VLH), ventral lateral preoptic area (VLPO), olivary pretectal nucleus (OPN), posterior limitans (PLi), commissural pretectal area (CPA), intergeniculate leaflet (IGL), ventral lateral geniculate nucleus (vLGN) and superior colliculus (SC). Following eye injections of the neuroanatomical tracer cholera toxin-beta, the distribution of anterogradely transported label was measured. The retinal projection to the contralateral VLH, PLi, CPA and IGL was enhanced in albino rats. No significant differences were found between albino and pigmented rats in retinal input to the VLPO, OPN and vLGN. These findings raise the possibility that enhanced retinofugal projections to subcortical visual nuclei in albinos may underlie some light-mediated behaviors that differ between albino and pigmented mammals.
    Neuroscience 01/2007; 143(3):895-904. DOI:10.1016/j.neuroscience.2006.08.016 · 3.33 Impact Factor