Cytotoxic Action of Acetyl-11-keto-β-Boswellic Acid (AKBA) on Meningioma Cells

Dongguk University, Sŏul, Seoul, South Korea
Planta Medica (Impact Factor: 2.15). 06/2002; 68(5):397-401. DOI: 10.1055/s-2002-32090
Source: PubMed

ABSTRACT Acetyl-11-keto-beta-boswellic acid (AKBA) is a naturally occurring pentacyclic triterpene isolated from the gum resin exudate of the tree Boswellia serrata (frankincense). Because pentacyclic triterpenes have antiproliferative and cytotoxic effects against different tumor types, we investigated whether AKBA would act in a similar fashion on primary human meningioma cell cultures. Primary cell cultures were established from surgically removed meningioma specimens. The number of viable cells in the absence/presence of AKBA was determined by the non-radioactive cell proliferation assay. The activation status of the proliferative cell marker, extracellular signal-regulated kinase-1 and -2 (Erk-1 and Erk-2) was determined by immunoblotting with the antibody that recognizes the activated form of these proteins. Treatment of meningioma cells by AKBA revealed a potent cytotoxic activity with half-maximal inhibitory concentrations in the range of 2 - 8 microM. At low micromolar concentrations, AKBA rapidly and potently inhibited the phosphorylation of Erk-1/2 and impaired the motility of meningioma cells stimulated with platelet-derived growth factor BB. The cytotoxic action of AKBA on meningioma cells may be mediated, at least in part, by the inhibition of the Erk signal transduction pathway. Because of the central role the Erk pathway plays in signal transduction and tumorigenesis, further investigation into the potential clinical use for AKBA and related boswellic acids is warranted.

178 Reads
  • Source
    • "BioMed Research International cells [12] "
    [Show abstract] [Hide abstract]
    ABSTRACT: The study investigated the growth-inhibiting and apoptosis mediating effects of B. serrata extract as monotherapy and combination therapy with DOX against hepatocellular carcinoma cell lines. Boswellic acid rich fraction of B. serrata extract was prepared. MTT assay on HepG2 and Hep3B cells was carried out using B. serrata alone and in combination with DOX. Further, caspase-3 activity, TNF-α level, and IL-6 level were estimated. Isobolographic analysis was carried out to evaluate the effect of combination therapy. Additionally, protective effect of B. serrata extract on DOX induced hepatic toxicity was also evaluated in Wistar rats. B. serrata extract inhibited growth of HepG2 (IC50 value of 21.21 ± 0.92 μg/mL) as well as HepG2 (IC50 value of 18.65 ± 0.71 μg/mL). DOX inhibited growth in HepG2 and Hep3B cells with an IC50 of 1.06 ± 0.04 μg/mL and 1.92 ± 0.09 μg/mL. Isobolographic analysis showed combination index (CI) of DOX and B. serrata extract of 0.53 ± 0.03 to 0.79 ± 0.02 suggesting synergistic behavior against the two cell lines. B. serrata extract also caused dose dependent increase in caspase-3 activity, TNF-α level, and IL-6 level which was higher (P < 0.001) with DOX (1 μM) and B. serrata extract (20 μg/mL) combination. B. serrata extract also protected Wistar rats against DOX induced hepatic toxicity.
    BioMed Research International 08/2014; 2014. DOI:10.1155/2014/294143 · 3.17 Impact Factor
  • Source
    • "The frankincense essential oil possesses anti-proliferative and pro-apoptotic activities against multiple human cancer cell lines in vitro and in vivo[6-8]. Boswellic acids were found to be the major components in frankincense extracts, with anti-tumor activity owing to their cytostatic and pro-apoptotic properties in multiple human cancer cell lines including meningioma cells [9], leukemia cells [10], hepatoma cells [11], melanoma cells, fibrosarcoma cells [12], colon cancer cells [13], and prostate cancer cells [14-16]. Some of the effects of frankincense essential oil were found to be related to the activities of sesquiterpenes and diterpenes [17]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Frankincense (Boswellia carterii, known as Ru Xiang in Chinese) and sandalwood (Santalum album, known as Tan Xiang in Chinese) are cancer preventive and therapeutic agents in Chinese medicine. Their biologically active ingredients are usually extracted from frankincense by hydrodistillation and sandalwood by distillation. This study aims to investigate the anti-proliferative and pro-apoptotic activities of frankincense and sandalwood essential oils in cultured human bladder cancer cells. Methods The effects of frankincense (1,400–600 dilutions) (v/v) and sandalwood (16,000–7,000 dilutions) (v/v) essential oils on cell viability were studied in established human bladder cancer J82 cells and immortalized normal human bladder urothelial UROtsa cells using a colorimetric XTT cell viability assay. Genes that responded to essential oil treatments in human bladder cancer J82 cells were identified using the Illumina Expression BeadChip platform and analyzed for enriched functions and pathways. The chemical compositions of the essential oils were determined by gas chromatography–mass spectrometry. Results Human bladder cancer J82 cells were more sensitive to the pro-apoptotic effects of frankincense essential oil than the immortalized normal bladder UROtsa cells. In contrast, sandalwood essential oil exhibited a similar potency in suppressing the viability of both J82 and UROtsa cells. Although frankincense and sandalwood essential oils activated common pathways such as inflammatory interleukins (IL-6 signaling), each essential oil had a unique molecular action on the bladder cancer cells. Heat shock proteins and histone core proteins were activated by frankincense essential oil, whereas negative regulation of protein kinase activity and G protein-coupled receptors were activated by sandalwood essential oil treatment. Conclusion The effects of frankincense and sandalwood essential oils on J82 cells and UROtsa cells involved different mechanisms leading to cancer cell death. While frankincense essential oil elicited selective cancer cell death via NRF-2-mediated oxidative stress, sandalwood essential oil induced non-selective cell death via DNA damage and cell cycle arrest.
    Chinese Medicine 07/2014; 9(1):18. DOI:10.1186/1749-8546-9-18 · 1.49 Impact Factor
  • Source
    • "Purified boswellic acids exhibit potent cytotoxic activities against cultured human neuroblastoma cell lines (IMR-32, NB-39, and SK-N-SH) [26], and inhibit DNA, RNA, and protein synthesis in human leukemia HL-60 cells [27]. Furthermore, boswellic acids including acetyl-11-keto-β-boswellic acid (AKBA) have been shown to possess anti-tumor activity against a variety of human cancer cell lines including meningioma cells [28], leukemia cells [27,29], hepatoma cells [30], melanoma cells, fibrosarcoma cells [31], colon cancer cells [32,33], prostate cancer cells [34,35], and pancreatic cancer cells [36,37] in both in vitro and in vivo conditions. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Regardless of the availability of therapeutic options, the overall 5-year survival for patients diagnosed with pancreatic cancer remains less than 5%. Gum resins from Boswellia species, also known as frankincense, have been used as a major ingredient in Ayurvedic and Chinese medicine to treat a variety of health-related conditions. Both frankincense chemical extracts and essential oil prepared from Boswellia species gum resins exhibit anti-neoplastic activity, and have been investigated as potential anti-cancer agents. The goals of this study are to identify optimal condition for preparing frankincense essential oil that possesses potent anti-tumor activity, and to evaluate the activity in both cultured human pancreatic cancer cells and a xenograft mouse cancer model. Methods Boswellia sacra gum resins were hydrodistilled at 78°C; and essential oil distillate fractions were collected at different durations (Fraction I at 0–2 h, Fraction II at 8–10 h, and Fraction III at 11–12 h). Hydrodistillation of the second half of gum resins was performed at 100°C; and distillate was collected at 11–12 h (Fraction IV). Chemical compositions were identified by gas chromatography–mass spectrometry (GC-MS); and total boswellic acids contents were quantified by high-performance liquid chromatography (HPLC). Frankincense essential oil-modulated pancreatic tumor cell viability and cytotoxicity were determined by colorimetric assays. Levels of apoptotic markers, signaling molecules, and cell cycle regulators expression were characterized by Western blot analysis. A heterotopic (subcutaneous) human pancreatic cancer xenograft nude mouse model was used to evaluate anti-tumor capability of Fraction IV frankincense essential oil in vivo. Frankincense essential oil-induced tumor cytostatic and cytotoxic activities in animals were assessed by immunohistochemistry. Results Longer duration and higher temperature hydrodistillation produced more abundant high molecular weight compounds, including boswellic acids, in frankincense essential oil fraactions. Human pancreatic cancer cells were sensitive to Fractions III and IV (containing higher molecular weight compounds) treatment with suppressed cell viability and increased cell death. Essential oil activated the caspase-dependent apoptotic pathway, induced a rapid and transient activation of Akt and Erk1/2, and suppressed levels of cyclin D1 cdk4 expression in cultured pancreatic cancer cells. In addition, Boswellia sacra essential oil Fraction IV exhibited anti-proliferative and pro-apoptotic activities against pancreatic tumors in the heterotopic xenograft mouse model. Conclusion All fractions of frankincense essential oil from Boswellia sacra are capable of suppressing viability and inducing apoptosis of a panel of human pancreatic cancer cell lines. Potency of essential oil-suppressed tumor cell viability may be associated with the greater abundance of high molecular weight compounds in Fractions III and IV. Although chemical component(s) responsible for tumor cell cytotoxicity remains undefined, crude essential oil prepared from hydrodistillation of Boswellia sacra gum resins might be a useful alternative therapeutic agent for treating patients with pancreatic adenocarcinoma, an aggressive cancer with poor prognosis.
    BMC Complementary and Alternative Medicine 12/2012; 12(1):253. DOI:10.1186/1472-6882-12-253 · 2.02 Impact Factor
Show more