Article

Structural characterization of lipo-oligosaccharide (LOS) from Yersinia pestis: regulation of LOS structure by the PhoPQ system.

Department of Biological Sciences, Wolfson Building, Imperial College, London, SW7 2AY, UK.
Molecular Microbiology (Impact Factor: 5.03). 07/2002; 44(6):1637-50. DOI: 10.1046/j.1365-2958.2002.02990.x
Source: PubMed

ABSTRACT The two-component regulatory system PhoPQ has been shown to regulate the expression of virulence factors in a number of bacterial species. For one such virulence factor, lipopolysaccharide (LPS), the PhoPQ system has been shown to regulate structural modifications in Salmonella enterica var Typhimurium. In Yersinia pestis, which expresses lipo-oligosaccharide (LOS), a PhoPQ regulatory system has been identified and an isogenic mutant constructed. To investigate potential modifications to LOS from Y. pestis, which to date has not been fully characterized, purified LOS from wild-type plague and the phoP defective mutant were analysed by mass spectrometry. Here we report the structural characterization of LOS from Y. pestis and the direct comparison of LOS from a phoP mutant. Structural modifications to lipid A, the host signalling portion of LOS, were not detected but analysis of the core revealed the expression of two distinct molecular species in wild-type LOS, differing in terminal galactose or heptose. The phoP mutant was restricted to the expression of a single molecular species, containing terminal heptose. The minimum inhibitory concentration of cationic antimicrobial peptides for the two strains was determined and compared with the wild-type: the phoP mutant was highly sensitive to polymyxin. Thus, LOS modification is under the control of the PhoPQ regulatory system and the ability to alter LOS structure may be required for survival of Y. pestis within the mammalian and/or flea host.

0 Followers
 · 
95 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Yersinia pestis undergoes an obligate flea-rodent-flea enzootic life cycle. The rapidly fatal properties of Y. pestis are responsible for the organism's sustained survival in natural plague foci. Lipopolysaccharide (LPS) plays several roles in Y. pestis pathogenesis, prominent among them being resistance to host immune effectors and induction of a septic-shock state during the terminal phases of infection. LPS is acylated with 4-6 fatty acids, the number varying with growth temperature and affecting the molecule's toxic properties. Y. pestis mutants were constructed with a deletion insertion in the lpxM gene in both virulent and attenuated strains, preventing the organisms from synthesizing the most toxic hexa-acylated lipid A molecule when grown at 25 degrees C. The virulence and/or protective potency of pathogenic and attenuated Y. pestis DeltalpxM mutants were then examined in a mouse model. The DeltalpxM mutation in a virulent strain led to no change in the LD(50) value compared to that of the parental strain, while the DeltalpxM mutation in attenuated strains led to a modest 2.5-16-fold reduction in virulence. LPS preparations containing fully hexa-acylated lipid A were ten times more toxic in actinomycin D-treated mice then preparations lacking this lipid A isoform, although this was not significant (P>0.05). The DeltalpxM mutation in vaccine strain EV caused a significant increase in its protective potency. These studies suggest there is little impact from lipid A modifications on the virulence of Y. pestis strains but there are potential improvements in the protective properties in attenuated vaccine strains.
    Journal of Medical Microbiology 05/2007; 56(Pt 4):443-53. DOI:10.1099/jmm.0.46880-0 · 2.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PhoP was previously shown to be important for Yersinia pestis survival in macrophage and under macrophage-induced stresses. In this work, a phoP disruptant of Y. pestis 201 was generated using the Red cloning procedure. The transcription profile of the wild-type Y. pestis was then compared with that of the phoP mutant under Mg2+-limiting conditions. It was revealed that PhoP/PhoQ governed a wide set of cellular pathways in Y. pestis, especially including the positive regulation of many metabolic processes, Mg2+ transport, peptidoglycan remodeling, lipopolysaccharide (LPS) modification and various stress-protective functions. The Mg2+ transport system regulated by PhoP may make Y. pestis to maintain the magnesium homeostasis under low Mg2+ environments. The PhoP-controlled stress-protective functions likely constitute the molecular basis for the observation that mutation of the phoP gene rendered the bacteria more sensitive to various macrophage-induced stresses. Modification of LPS mediated by PhoP is hypothesized to not only neutralize negative charges as normally done by Mg2+ ions, but also mediate the resistance of Y. pestis to antimicrobial peptides. The microarray results provide a population of candidate genes or pathways, and further biochemical experiments are needed to elucidate the PhoP-dependent mechanisms by which Y. pestis survives the antibacterial strategies employed by host macrophages.
    FEMS Microbiology Letters 10/2005; 250(1):85-95. DOI:10.1016/j.femsle.2005.06.053 · 2.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In response to the ever-present need to adapt to environmental stress, bacteria have evolved complex (and often overlapping) regulatory networks that respond to various changes in growth conditions, including entry into the host. The expression of most bacterial virulence factors is regulated; thus the question of how bacteria orchestrate this process has become a recurrent research theme for every bacterial pathogen, and the three pathogenic Yersinia are no exception. The earliest studies of regulation in these species were prompted by the characterization of plasmid-encoded virulence determinants, and those conducted since have continued to focus on the principal aspects of virulence in these pathogens. Most Yersinia virulence factors are thermally regulated, and are active at either 28 degrees C (the optimal growth temperature) or 37 degrees C (the host temperature). However, regulation by this omnipresent thermal stimulus occurs through a wide variety of mechanisms, which generally act in conjunction with (or are modulated by) additional controls for other environmental cues such as pH, ion concentration, nutrient availability, osmolarity, oxygen tension and DNA damage. Yersinia's recent entry into the genome sequencing era has given scientists the opportunity to study these regulators on a genome-wide basis. This has prompted the first attempts to establish links between the presence or absence of regulatory elements and the three pathogenic species' respective lifestyles and degrees of virulence.
    Current issues in molecular biology 08/2005; 7(2):151-77. · 6.00 Impact Factor

Preview

Download
1 Download