Structural characterization of lipo-oligosaccharide (LOS) from Yersinia pestis: regulation of LOS structure by the PhoPQ system.

Department of Biological Sciences, Wolfson Building, Imperial College, London, SW7 2AY, UK.
Molecular Microbiology (Impact Factor: 5.03). 07/2002; 44(6):1637-50. DOI: 10.1046/j.1365-2958.2002.02990.x
Source: PubMed

ABSTRACT The two-component regulatory system PhoPQ has been shown to regulate the expression of virulence factors in a number of bacterial species. For one such virulence factor, lipopolysaccharide (LPS), the PhoPQ system has been shown to regulate structural modifications in Salmonella enterica var Typhimurium. In Yersinia pestis, which expresses lipo-oligosaccharide (LOS), a PhoPQ regulatory system has been identified and an isogenic mutant constructed. To investigate potential modifications to LOS from Y. pestis, which to date has not been fully characterized, purified LOS from wild-type plague and the phoP defective mutant were analysed by mass spectrometry. Here we report the structural characterization of LOS from Y. pestis and the direct comparison of LOS from a phoP mutant. Structural modifications to lipid A, the host signalling portion of LOS, were not detected but analysis of the core revealed the expression of two distinct molecular species in wild-type LOS, differing in terminal galactose or heptose. The phoP mutant was restricted to the expression of a single molecular species, containing terminal heptose. The minimum inhibitory concentration of cationic antimicrobial peptides for the two strains was determined and compared with the wild-type: the phoP mutant was highly sensitive to polymyxin. Thus, LOS modification is under the control of the PhoPQ regulatory system and the ability to alter LOS structure may be required for survival of Y. pestis within the mammalian and/or flea host.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Omics has remarkably changed the way we investigate and understand life. Omics differs from traditional hypothesis-driven research because it is a discovery-driven approach. Mass datasets produced from omics-based studies require experts from different fields to reveal the salient features behind these data. In this review, we summarize omics-driven studies to reveal the virulence features of Yersinia pestis through genomics, trascriptomics, proteomics, interactomics, etc. These studies serve as foundations for further hypothesis-driven research and help us gain insight into Y. pestis pathogenesis.
    Frontiers in Cellular and Infection Microbiology 01/2012; 2:157. · 2.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Yersinia pestis is one of the most dangerous bacterial pathogens. PhoP and cyclic AMP receptor protein (CRP) are global regulators of Y. pestis, and they control two distinct regulons that contain multiple virulence-related genes. The PhoP regulator and its cognate sensor PhoQ constitute a two-component regulatory system. The regulatory activity of CRP is triggered only by binding to its cofactor cAMP that is synthesized from ATP by adenylyl cyclase (encoded by cyaA). However, the association between the two regulatory systems PhoP/PhoQ and CRP-cAMP is still not understood in Y. pestis. In the present work, the four consecutive genes YPO1635, phoP, phoQ, and YPO1632 were found to constitute an operon YPO1635-phoPQ-YPO1632 transcribed as a single primary RNA, whereas the later three genes comprised another operon phoPQ-YPO1632 transcribed with two adjacent transcriptional starts. Through direct PhoP-target promoter association, the transcription of these two operons was stimulated and repressed by PhoP, respectively; thus, both positive and negative autoregulation of PhoP/PhoQ were detected. In addition, PhoP acted as a direct transcriptional activator of crp and cyaA. The translational/transcriptional start sites, promoter -10 and -35 elements, PhoP sites, and PhoP box-like sequences were determined for these PhoP-dependent genes, providing a map of the PhoP-target promoter interaction. The CRP and PhoP regulons have evolved to merge into a single regulatory cascade in Y. pestis because of the direct regulatory association between PhoP/PhoQ and CRP-cAMP.
    Journal of bacteriology 12/2012; · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transmission of Yersinia pestis is greatly enhanced after it forms a bacterial biofilm in the foregut of the flea vector that interferes with normal blood feeding. Here we report that the ability to produce a normal foregut-blocking infection depends on induction of the Y. pestis PhoP-PhoQ two-component regulatory system in the flea. Y. pestis phoP-negative mutants achieved normal infection rates and bacterial loads in the flea midgut, but produced a less cohesive biofilm both in vitro and in the flea and had a greatly reduced ability to localize to and block the flea foregut. Thus, not only is the PhoP-PhoQ system induced in the flea gut environment, but this induction is required to produce a normal transmissible infection. The altered biofilm phenotype in the flea was not due to lack of PhoPQ-dependent or PmrAB-dependent addition of aminoarabinose to the Y. pestis lipid A, because an aminoarabinose-deficient mutant that is highly sensitive to cationic antimicrobial peptides had a normal phenotype in the flea digestive tract. In addition to enhancing transmissibility, induction of the PhoP-PhoQ system in the arthropod vector prior to transmission may preadapt Y. pestis to resist the initial encounter with the mammalian innate immune response.
    Journal of bacteriology 02/2013; · 3.94 Impact Factor


1 Download