The spatiotemporal dynamics of illusory contour processing: combined high-density electrical mapping, source analysis, and functional magnetic resonance imaging.

The Cognitive Neurophysiology Laboratory, Program in Cognitive Neuroscience and Schizophrenia, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962, USA.
Journal of Neuroscience (Impact Factor: 6.91). 07/2002; 22(12):5055-73.
Source: PubMed

ABSTRACT Because environmental information is often suboptimal, visual perception must frequently rely on the brain's reconstruction of contours absent from retinal images. Illusory contour (IC) stimuli have been used to investigate these "filling-in" processes. Intracranial recordings and neuroimaging studies show IC sensitivity in lower-tier area V2, and to a lesser extent V1. Some interpret these data as evidence for feedforward processing of IC stimuli, beginning at lower-tier visual areas. On the basis of lesion, visual evoked potentials (VEP), and neuroimaging evidence, others contend that IC sensitivity is a later, higher-order process. Whether IC sensitivity seen in lower-tier areas indexes feedforward or feedback processing remains unresolved. In a series of experiments, we addressed the spatiotemporal dynamics of IC processing. Centrally presented IC stimuli resulted in early VEP modulation (88-100 msec) over lateral-occipital (LOC) scalp--the IC effect. The IC effect followed visual response onset by 40 msec. Scalp current density topographic mapping, source analysis, and functional magnetic resonance imaging results all localized the IC effect to bilateral LOC areas. We propose that IC sensitivity described in V2 and V1 may reflect predominantly feedback modulation from higher-tier LOC areas, where IC sensitivity first occurs. Two additional observations further support this proposal. The latency of the IC effect shifted dramatically later (approximately 120 msec) when stimuli were laterally presented, indicating that retinotopic position alters IC processing. Immediately preceding the IC effect, the VEP modulated with inducer eccentricity--the configuration effect. We interpret this to represent contributions from global stimulus parameters to scene analysis. In contrast to the IC effect, the topography of the configuration effect was restricted to central parieto-occipital scalp.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite myriad studies, neurophysiologic mechanisms mediating illusory contour (IC) sensitivity remain controversial. Among the competing models one favors feed-forward effects within lower-tier cortices (V1/V2). Another situates IC sensitivity first within higher-tier cortices, principally lateral-occipital cortices (LOC), with later feedback effects in V1/V2. Still others postulate that LOC are sensitive to salient regions demarcated by the inducing stimuli, whereas V1/V2 effects specifically support IC sensitivity. We resolved these discordances by using misaligned line gratings, oriented either horizontally or vertically, to induce ICs. Line orientation provides an established assay of V1/V2 modulations independently of IC presence, and gratings lack salient regions. Electrical neuroimaging analyses of visual evoked potentials (VEPs) disambiguated the relative timing and localization of IC sensitivity with respect to that for grating orientation. Millisecond-by-millisecond analyses of VEPs and distributed source estimations revealed a main effect of grating orientation beginning at 65 ms post-stimulus onset within the calcarine sulcus that was followed by a main effect of IC presence beginning at 85 ms post-stimulus onset within the LOC. There was no evidence for differential processing of ICs as a function of the orientation of the grating. These results support models wherein IC sensitivity occurs first within the LOC.
    NeuroImage 02/2012; 59(3):2808-17. · 6.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Binocular rivalry probably involves distributed neural processes, some responsible for dominance, others for suppression and still others for fluctuations in perception. Focusing on the suppression process, the present study asks whether neural events underlying rivalry suppression take place prior to, or subsequent to those underlying the synthesis of subjective contours. Specifically, we examined whether (i) a subjective contour could prematurely return a suppressed target to dominance and (ii) whether suppression of a Kanizsa-type inducer precludes the formation of a subjective contour. Suppression durations were not abbreviated by the subjective contour, but suppression did prevent the formation of a subjective contour. Evidently suppression precedes the synthesis of subjective contours in the visual processing hierarchy.
    Vision Research 07/2003; 43(14):1533-40. · 2.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Feature-based attention has been shown to aid object perception. Our previous ERP effects revealed temporally late feature-based modulation in response to objects relative to motion. The aim of the current study was to confirm the timing of feature-based influences on object perception while cueing within the feature dimension of shape. Participants were told to expect either "pillow" or "flower" objects embedded among random white and black lines. Participants more accurately reported the object's main color for valid compared to invalid shapes. ERPs revealed modulation from 252-502 ms, from occipital to frontal electrodes. Our results are consistent with previous findings examining the time course for processing similar stimuli (illusory contours). Our results provide novel insights into how attending to features of higher complexity aids object perception presumably via feed-forward and feedback mechanisms along the visual hierarchy.
    Psychophysiology 01/2014; · 3.29 Impact Factor


Available from
May 23, 2014