Article

The spatiotemporal dynamics of illusory contour processing: combined high-density electrical mapping, source analysis, and functional magnetic resonance imaging.

The Cognitive Neurophysiology Laboratory, Program in Cognitive Neuroscience and Schizophrenia, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962, USA.
Journal of Neuroscience (Impact Factor: 6.91). 07/2002; 22(12):5055-73.
Source: PubMed

ABSTRACT Because environmental information is often suboptimal, visual perception must frequently rely on the brain's reconstruction of contours absent from retinal images. Illusory contour (IC) stimuli have been used to investigate these "filling-in" processes. Intracranial recordings and neuroimaging studies show IC sensitivity in lower-tier area V2, and to a lesser extent V1. Some interpret these data as evidence for feedforward processing of IC stimuli, beginning at lower-tier visual areas. On the basis of lesion, visual evoked potentials (VEP), and neuroimaging evidence, others contend that IC sensitivity is a later, higher-order process. Whether IC sensitivity seen in lower-tier areas indexes feedforward or feedback processing remains unresolved. In a series of experiments, we addressed the spatiotemporal dynamics of IC processing. Centrally presented IC stimuli resulted in early VEP modulation (88-100 msec) over lateral-occipital (LOC) scalp--the IC effect. The IC effect followed visual response onset by 40 msec. Scalp current density topographic mapping, source analysis, and functional magnetic resonance imaging results all localized the IC effect to bilateral LOC areas. We propose that IC sensitivity described in V2 and V1 may reflect predominantly feedback modulation from higher-tier LOC areas, where IC sensitivity first occurs. Two additional observations further support this proposal. The latency of the IC effect shifted dramatically later (approximately 120 msec) when stimuli were laterally presented, indicating that retinotopic position alters IC processing. Immediately preceding the IC effect, the VEP modulated with inducer eccentricity--the configuration effect. We interpret this to represent contributions from global stimulus parameters to scene analysis. In contrast to the IC effect, the topography of the configuration effect was restricted to central parieto-occipital scalp.

1 Bookmark
 · 
89 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Visual skills, including numerosity estimation are reported to be superior in autism spectrum disorders (ASD). This phenomenon is attributed to individuals with ASD processing local features, rather than the Gestalt. We examined the neural correlates of numerosity estimation in adults with and without ASD, to disentangle perceptual atypicalities from numerosity processing. Fourteen adults with ASD and matched typically developed (TD) controls estimated the number of dots (80–150) arranged either randomly (local information) or in meaningful patterns (global information) while brain activity was recorded with magnetoencephalography (MEG). Behavioral results showed no significant group difference in the errors of estimation. However, numerical estimation in ASD was more variable across numerosities than TD and was not affected by the global arrangement of the dots. At 80–120 ms, MEG analyses revealed early significant differences (TD > ASD) in source amplitudes in visual areas, followed from 120 to 400 ms by group differences in temporal, and then parietal regions. After 400 ms, a source was found in the superior frontal gyrus in TD only. Activation in temporal areas was differently sensitive to the global arrangement of dots in TD and ASD. MEG data show that individuals with autism exhibit widespread functional abnormalities. Differences in temporal regions could be linked to atypical global perception. Occipital followed by parietal and frontal differences might be driven by abnormalities in the processing and conversion of visual input into a number-selective neural code and complex cognitive decisional stages. These results suggest overlapping atypicalities in sensory, perceptual and number-related processing during numerosity estimation in ASD. Hum Brain Mapp, 2014. © 2014 Wiley Periodicals, Inc.
    Human Brain Mapping 03/2014; · 6.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We assessed the role of alpha-band oscillatory activity during a task-switching design that required participants to switch between an auditory and a visual task, while task-relevant audiovisual inputs were simultaneously presented. Instructional cues informed participants which task to perform on a given trial and we assessed alpha-band power in the short 1.35-s period intervening between the cue and the task-imperative stimuli, on the premise that attentional biasing mechanisms would be deployed to resolve competition between the auditory and visual inputs. Prior work had shown that alpha-band activity was differentially deployed depending on the modality of the cued task. Here, we asked whether this activity would, in turn, be differentially deployed depending on whether participants had just made a switch of task or were being asked to simply repeat the task. It is well established that performance speed and accuracy are poorer on switch than on repeat trials. Here, however, the use of instructional cues completely mitigated these classic switch-costs. Measures of alpha-band synchronisation and desynchronisation showed that there was indeed greater and earlier differential deployment of alpha-band activity on switch vs. repeat trials. Contrary to our hypothesis, this differential effect was entirely due to changes in the amount of desynchronisation observed during switch and repeat trials of the visual task, with more desynchronisation over both posterior and frontal scalp regions during switch-visual trials. These data imply that particularly vigorous, and essentially fully effective, anticipatory biasing mechanisms resolved the competition between competing auditory and visual inputs when a rapid switch of task was required.
    European Journal of Neuroscience 04/2014; · 3.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Walking while simultaneously performing cognitively demanding tasks such as talking or texting are typical complex behaviors in our daily routines. Little is known about neural mechanisms underlying cortical resource allocation during such mobile actions, largely due to portability limitations of conventional neuroimaging technologies. We applied an EEG-based Mobile Brain-Body Imaging (MOBI) system that integrates high-density event-related potential (ERP) recordings with simultaneously acquired foot-force sensor data to monitor gait patterns and brain activity. We compared behavioral and ERP measures associated with performing a Go/NoGo response-inhibition task under conditions where participants (N=18) sat stationary, walked deliberately or walked briskly. This allowed for assessment of effects of increasing dual-task load (i.e. walking speed) on neural indices of inhibitory control. Stride time and variability were also measured during inhibitory task performance and compared to stride parameters without task performance, thereby assessing reciprocal dual-task effects on gait parameters. There were no task performance differences between sitting and either walking condition, indicating that participants could perform both tasks simultaneously without suffering dual-task costs. However, participants took longer strides under dual-task load, likely indicating an adaptive mechanism to reduce inter-task competition for cortical resources. We found robust differences in amplitude, latency and topography of ERP components (N2 and P3) associated with inhibitory control between the sitting and walking conditions. Considering that participants showed no dual-task performance costs, we suggest that observed neural alterations under increasing task-load represent adaptive recalibration of the inhibitory network towards a more controlled and effortful processing mode, thereby optimizing performance under dual-task situations.
    NeuroImage 03/2014; · 6.25 Impact Factor

Full-text

View
15 Downloads
Available from
May 23, 2014