Patnaik, R. et al. Genome shuffling of Lactobacillus for improved acid tolerance. Nat. Biotechnol. 20, 707-712

Codexis, 515 Galveston Drive, Redwood City, CA 94063, USA.
Nature Biotechnology (Impact Factor: 41.51). 08/2002; 20(7):707-12. DOI: 10.1038/nbt0702-707
Source: PubMed


Fermentation-based bioprocesses rely extensively on strain improvement for commercialization. Whole-cell biocatalysts are commonly limited by low tolerance of extreme process conditions such as temperature, pH, and solute concentration. Rational approaches to improving such complex phenotypes lack good models and are especially difficult to implement without genetic tools. Here we describe the use of genome shuffling to improve the acid tolerance of a poorly characterized industrial strain of Lactobacillus. We used classical strain-improvement methods to generate populations with subtle improvements in pH tolerance, and then shuffled these populations by recursive pool-wise protoplast fusion. We identified new shuffled lactobacilli that grow at substantially lower pH than does the wild-type strain on both liquid and solid media. In addition, we identified shuffled strains that produced threefold more lactic acid than the wild type at pH 4.0. Genome shuffling seems broadly useful for the rapid evolution of tolerance and other complex phenotypes in industrial microorganisms.

Download full-text


Available from: Ranjan Patnaik,
  • Source
    • "Notably, although HR50 reproducibly grew on LB agar plate at 508C after two days of induction, the same colony failed to grow in LB liquid medium after shaken at 508C for five days (Fig. S1). This might be ascribed to the different stress tolerances of microbes grown in solid and liquid media, which have been extensively reported [21] [22] [23]. Supplementary Fig. S1 related to this article can be found, in the online version, at "
    [Show abstract] [Hide abstract]
    ABSTRACT: Heat tolerance of microbes is of great importance for efficient biorefinery and bioconversion. However, engineering and understanding of microbial heat tolerance are difficult and insufficient because it is a complex physiological trait which probably correlates with all gene functions, genetic regulations, and cellular metabolisms and activities. In this work, a novel strain engineering approach named Genome Replication Engineering Assisted Continuous Evolution (GREACE) was employed to improve the heat tolerance of Escherichia coli. When the E. coli strain carrying a mutator was cultivated under gradually increasing temperature, genome-wide mutations were continuously generated during genome replication and the mutated strains with improved thermotolerance were autonomously selected. A thermotolerant strain HR50 capable of growing at 50°C on LB agar plate was obtained within two months, demonstrating the efficiency of GREACE in improving such a complex physiological trait. To understand the improved heat tolerance, genomes of HR50 and its wildtype strain DH5α were sequenced. Evenly-distributed 361 mutations covering all mutation types were found in HR50. Closed material transportations, loose genome conformation, and possibly altered cell wall structure and transcription pattern were the main differences of HR50 compared with DH5α, which were speculated to be responsible for the improved heat tolerance. This work not only expanding our understanding of microbial heat tolerance, but also emphasizing that the in vivo continuous genome mutagenesis method, GREACE, is efficient in improving microbial complex physiological trait. Copyright © 2015 Elsevier B.V. All rights reserved.
    New Biotechnology 02/2015; 32(6). DOI:10.1016/j.nbt.2015.01.013 · 2.90 Impact Factor
  • Source
    • "More than 250 genes are believed to be involved in ethanol tolerance (Hu et al., 2007; Auesukaree et al., 2009; Teixeira et al., 2009; Hou, 2010; Mira et al., 2010). Although time-consuming, laborious and inefficient, classical mutagenesis methods of treating organisms with physical irradiation or chemical mutagens are one of the main ways of improving microorganism strains with regard to environmental tolerance (Patnaik et al., 2002; Stephanopoulos, 2002; Zhang et al., 2002; Pereira et al., 2003; Rosenfeld et al., 2003; Lam et al., 2010; Mira et al., 2010; Zhao et al., 2010; Fiedurek et al., 2011; Yang et al., 2011; Kumari and Pramanik, 2012; Tao et al., 2012; Kim et al., 2013; Wang et al., 2013). Simultaneous improvements of these related genes in cells have proven to be difficult through the molecular biological methods because of a lack of the necessary genetic knowledge and tools for genetic modification on the multiple-gene level. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We evaluated whether epigenetic changes contributed to improve ethanol tolerance in mutant populations of Saccharomyces cerevisiae (S. cerevisiae). Two ethanol-tolerant variants of S. cerevisiae were used to evaluate the genetic stability in the process of stress-free passage cultures. We found that acquired ethanol tolerance was lost and transcription level of some genes (HSP104, PRO1, TPS1, and SOD1) closely related to ethanol tolerance decreased significantly after the 10th passage in ethanol-free medium. Tri-methylation of lysine 4 on histone H3 (H3K4) enhanced at the promoter of HSP104, PRO1, TPS1 and SOD1 in ethanol-tolerant variants of S. cerevisiae was also diminished after tenth passage in stress-free cultures. The ethanol tolerance was reacquired when exogenous SOD1 transferred in some tolerance-lost strains. This showed that H3K4 methylation is involved in phenotypic variation with regard to ethanol tolerance with respect to classic breeding methods used in yeast.
    Microbial Biotechnology 05/2014; 7(4). DOI:10.1111/1751-7915.12121 · 3.21 Impact Factor
  • Source
    • "Efficient microbial production of biofuels from renewable resources requires robust cell growth and stable metabolism under tough industrial conditions, represented by inhibitory components in substrates and toxic products [1,2]. Microbial tolerance to these inhibitory environmental factors is a complex phenotype usually controlled by multiple genes [3,4], and thus is difficult to be engineered by targeted metabolic engineering approaches [5]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Microbial production of biofuels requires robust cell growth and metabolism under tough conditions. Conventionally, such tolerance phenotypes were engineered through evolutionary engineering using the principle of "Mutagenesis followed-by Selection". The iterative rounds of mutagenesis-selection and frequent manual interventions resulted in discontinuous and inefficient strain improvement processes. This work aimed to develop a more continuous and efficient evolutionary engineering method termed as "Genome Replication Engineering Assisted Continuous Evolution" (GREACE) using "Mutagenesis coupled-with Selection" as its core principle. The core design of GREACE is to introduce an in vivo continuous mutagenesis mechanism into microbial cells by introducing a group of genetically modified proofreading elements of the DNA polymerase complex to accelerate the evolution process under stressful conditions. The genotype stability and phenotype heritability can be stably maintained once the genetically modified proofreading element is removed, thus scarless mutants with desired phenotypes can be obtained.Kanamycin resistance of E. coli was rapidly improved to confirm the concept and feasibility of GREACE. Intrinsic mechanism analysis revealed that during the continuous evolution process, the accumulation of genetically modified proofreading elements with mutator activities endowed the host cells with enhanced adaptation advantages. We further showed that GREACE can also be applied to engineer n-butanol and acetate tolerances. In less than a month, an E. coli strain capable of growing under an n-butanol concentration of 1.25% was isolated. As for acetate tolerance, cell growth of the evolved E. coli strain increased by 8-fold under 0.1% of acetate. In addition, we discovered that adaptation to specific stresses prefers accumulation of genetically modified elements with specific mutator strengths. We developed a novel GREACE method using "Mutagenesis coupled-with Selection" as core principle. Successful isolation of E. coli strains with improved n-butanol and acetate tolerances demonstrated the potential of GREACE as a promising method for strain improvement in biofuels production.
    Biotechnology for Biofuels 09/2013; 6(1):137. DOI:10.1186/1754-6834-6-137 · 6.04 Impact Factor
Show more