Genome shuffling of Lactobacillus for improved acid tolerance.

Codexis, 515 Galveston Drive, Redwood City, CA 94063, USA.
Nature Biotechnology (Impact Factor: 32.44). 08/2002; 20(7):707-12. DOI:10.1038/nbt0702-707
Source: PubMed

ABSTRACT Fermentation-based bioprocesses rely extensively on strain improvement for commercialization. Whole-cell biocatalysts are commonly limited by low tolerance of extreme process conditions such as temperature, pH, and solute concentration. Rational approaches to improving such complex phenotypes lack good models and are especially difficult to implement without genetic tools. Here we describe the use of genome shuffling to improve the acid tolerance of a poorly characterized industrial strain of Lactobacillus. We used classical strain-improvement methods to generate populations with subtle improvements in pH tolerance, and then shuffled these populations by recursive pool-wise protoplast fusion. We identified new shuffled lactobacilli that grow at substantially lower pH than does the wild-type strain on both liquid and solid media. In addition, we identified shuffled strains that produced threefold more lactic acid than the wild type at pH 4.0. Genome shuffling seems broadly useful for the rapid evolution of tolerance and other complex phenotypes in industrial microorganisms.

0 0
  • [show abstract] [hide abstract]
    ABSTRACT: Whole-genome shuffling (WGS) is a powerful technology of improving the complex traits of many microorganisms. However, the molecular mechanisms underlying the altered phenotypes in isolates were less clarified. Isolates with significantly enhanced stress tolerance and ethanol titer under very-high-gravity conditions were obtained after WGS of the bioethanol Saccharomyces cerevisiae strain ZTW1. Karyotype analysis and RT-qPCR showed that chromosomal rearrangement occurred frequently in genome shuffling. Thus, the phenotypic effects of genomic structural variations were determined in this study. RNA-Seq and physiological analyses revealed the diverse transcription pattern and physiological status of the isolate S3-110 and ZTW1. Our observations suggest that the improved stress tolerance of S3-110 can be largely attributed to the copy number variations in large DNA regions, which would adjust the ploidy of yeast cells and expression levels of certain genes involved in stress response. Overall, this work not only constructed shuffled S. cerevisiae strains that have potential industrial applications but also provided novel insights into the molecular mechanisms of WGS and enhanced our knowledge on this useful breeding strategy.
    Applied Microbiology and Biotechnology 12/2013; · 3.69 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We describe a rapid and highly efficient method for the assembly, recombination, targeted chromosomal integration and regulatable expression of mosaic metabolic pathways by homeologous recombination in DNA repair deficient yeast cells. We have assembled and recombined 23 kb pathways containing all the genes encoding enzymes for the production of flavonoids, a group of plant secondary metabolites of nutritional and agricultural value. The mosaic genes of the pathways resulted from pair-wise recombination of two nonidentical (homeologous) wild-type genes. The recombination events occurred simultaneously in the cell. Correctly assembled mosaic gene clusters could only be observed in DNA repair deficient strains. Thus, libraries of intragenic mosaic pathways were generated. Randomly isolated clones were screened for their ability to produce flavonoids such as kaempferol, phloretin and galangin. Thus, the functionality of the recombinant pathways was proven. Additionally, significant higher concentrations of metabolites such as naringenin, pinocembrin and dihydrokaempferol were detected. Further analysis also revealed the production of different aromatic compounds such as styrene, hydroxystyrene, phloretic acid and other molecules. We show that the in vivo homeologous recombination strategy can generates libraries of intragenic mosaic pathways producing a high diversity of phenylpropanoid compounds.
    Metabolic Engineering 01/2014; · 6.86 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Xylose fermentation is necessary for the bioconversion of lignocellulose to ethanol as fuel, but wild-type Saccharomyces cerevisiae strains cannot fully metabolize xylose. Several efforts have been made to obtain microbial strains with enhanced xylose fermentation. However, xylose fermentation remains a serious challenge because of the complexity of lignocellulosic biomass hydrolysates. Genome shuffling has been widely used for the rapid improvement of industrially important microbial strains. After two rounds of genome shuffling, a genetically stable, high-ethanol-producing strain was obtained. Designated as TJ2-3, this strain could ferment xylose and produce 1.5 times more ethanol than wild-type Pichia stipitis after fermentation for 96 h. The acridine orange and propidium iodide uptake assays showed that the maintenance of yeast cell membrane integrity is important for ethanol fermentation. This study highlights the importance of genome shuffling in P. stipitis as an effective method for enhancing the productivity of industrial strains.
    Microbial Biotechnology 01/2014; · 3.21 Impact Factor

Full-text (2 Sources)

Available from
Aug 2, 2013