Apoptosis of biliary epithelial cells in primary biliary cirrhosis and primary sclerosing cholangitis.

Department of Medicine, University Health Network, Toronto, Ontario, Canada.
Liver International 07/2002; 22(3):228-34. DOI: 10.1046/j.0106-9543.2002.01595.x
Source: PubMed

ABSTRACT Primary biliary cirrhosis (PBC) is an autoimmune disease characterized by inflammatory destruction of small bile ducts. Primary sclerosing cholangitis (PSC) is a different, presumed autoimmune cholestatic liver disease where the bile ducts are also destroyed. In this study, apoptosis and portal triad inflammation in liver tissue from patients with PBC is examined and compared to that from patients with PSC and patients with normal liver.
Explanted liver tissue from patients with PBC and PSC and normal liver from patients with metastases to liver were examined. The liver samples were stained for apoptosis using the terminal deoxynucleotidyl triphosphate (TdT)-mediated deoxyuridine triphosphate nick end labelling (TUNEL) assay. The biliary epithelial cells (BEC) were then scored on the basis of their TUNEL stain and the degree of periductal inflammation.
In PBC, apoptosis of BEC, as detected by the TUNEL assay, was significantly increased in the presence of inflammation. Regardless of the presence or absence of inflammation, the small bile ducts in PBC liver tissue exhibited greater evidence of apoptosis than did similar ducts from PSC or control livers.
These findings suggest that in PBC, unlike PSC, the apoptosis of BEC in PBC is secondary to the invasion of inflammatory cells.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell death by apoptosis is a prominent feature in a variety of liver diseases. It is likely that apoptosis is the initial cellular response to hepatocyte and biliary injury, which then leads to the initiation of cellular and cytokine cascades culminating in hepatocyte death with subsequent fibrosis and cirrhosis. This sequence of events is of paramount clinical importance. Recently, soluble forms of the major histocompatibility complex class I-related chains A and closely related B (MIC A and B) were reported to be increased in patients with a variety of liver diseases. MIC A and B are cell surface glycoproteins that function as indicators for cellular stress and thus activate circulating cytotoxic natural killer (NK) cells. The interaction between MIC A and B with their cognate receptor natural killer group 2 member D (NKG2D) culminates in enhanced liver cell death, which is mediated in part by apoptotic mechanisms. The present overview focuses on the role of the stress-induced NKG2D ligands MIC A and B in diverse liver diseases. Critical insights into these complex relations may help to promote rationally based therapies in liver diseases. Importantly, we hope that this overview will help to stimulate further studies into mechanisms by which stress ligands mediate cell death and its sequale.
    Liver international: official journal of the International Association for the Study of the Liver 07/2011; 32(3):370-82. · 3.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: UDCA (ursodeoxycholic acid) is the therapeutic agent most widely used for the treatment of cholestatic hepatopathies. Its use has expanded to other kinds of hepatic diseases, and even to extrahepatic ones. Such versatility is the result of its multiple mechanisms of action. UDCA stabilizes plasma membranes against cytolysis by tensioactive bile acids accumulated in cholestasis. UDCA also halts apoptosis by preventing the formation of mitochondrial pores, membrane recruitment of death receptors and endoplasmic-reticulum stress. In addition, UDCA induces changes in the expression of metabolizing enzymes and transporters that reduce bile acid cytotoxicity and improve renal excretion. Its capability to positively modulate ductular bile flow helps to preserve the integrity of bile ducts. UDCA also prevents the endocytic internalization of canalicular transporters, a common feature in cholestasis. Finally, UDCA has immunomodulatory properties that limit the exacerbated immunological response occurring in autoimmune cholestatic diseases by counteracting the overexpression of MHC antigens and perhaps by limiting the production of cytokines by immunocompetent cells. Owing to this multi-functionality, it is difficult to envisage a substitute for UDCA that combines as many hepatoprotective effects with such efficacy. We predict a long-lasting use of UDCA as the therapeutic agent of choice in cholestasis.
    Clinical Science 12/2011; 121(12):523-44. · 4.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human cholangiocytes are continuously exposed to millimolar levels of hydrophobic bile salt monomers. We recently hypothesized that an apical biliary HCO3- umbrella might prevent the protonation of biliary glycine-conjugated bile salts and uncontrolled cell entry of the corresponding bile acids, and that defects in this biliary HCO3- umbrella might predispose to chronic cholangiopathies. Here, we tested in vitro whether human cholangiocyte integrity in the presence of millimolar bile salt monomers is dependent on (1) pH, (2) adequate expression of the key HCO3- exporter, anion exchanger 2 (AE2), and (3) an intact cholangiocyte glycocalyx. To address these questions, human immortalized cholangiocytes and cholangiocarcinoma cells were exposed to chenodeoxycholate and its glycine/taurine conjugates at different pH levels. Bile acid uptake was determined radiochemically. Cell viability and apoptosis were measured enzymatically. AE2 was knocked down by lentiviral short hairpin RNA. A cholangiocyte glycocalyx was identified by electron microscopy, was enzymatically desialylated, and sialylation was quantified by flow cytometry. We found that bile acid uptake and toxicity in human immortalized cholangiocytes and cholangiocarcinoma cell lines in vitro were pH and AE2 dependent, with the highest rates at low pH and when AE2 expression was defective. An apical glycocalyx was identified on cholangiocytes in vitro by electron microscopic techniques. Desialylation of this protective layer increased cholangiocellular vulnerability in a pH-dependent manner. CONCLUSION: A biliary HCO3- umbrella protects human cholangiocytes against damage by bile acid monomers. An intact glycocalyx and adequate AE2 expression are crucial in this process. Defects of the biliary HCO3- umbrella may lead to the development of chronic cholangiopathies.
    Hepatology 09/2011; 55(1):173-83. · 12.00 Impact Factor