Article

Apoptosis of biliary epithelial cells in primary biliary cirrhosis and primary sclerosing cholangitis

Toronto Western Hospital, Toronto, Ontario, Canada
Liver International 07/2002; 22(3):228-34. DOI: 10.1046/j.0106-9543.2002.01595.x
Source: PubMed

ABSTRACT Primary biliary cirrhosis (PBC) is an autoimmune disease characterized by inflammatory destruction of small bile ducts. Primary sclerosing cholangitis (PSC) is a different, presumed autoimmune cholestatic liver disease where the bile ducts are also destroyed. In this study, apoptosis and portal triad inflammation in liver tissue from patients with PBC is examined and compared to that from patients with PSC and patients with normal liver.
Explanted liver tissue from patients with PBC and PSC and normal liver from patients with metastases to liver were examined. The liver samples were stained for apoptosis using the terminal deoxynucleotidyl triphosphate (TdT)-mediated deoxyuridine triphosphate nick end labelling (TUNEL) assay. The biliary epithelial cells (BEC) were then scored on the basis of their TUNEL stain and the degree of periductal inflammation.
In PBC, apoptosis of BEC, as detected by the TUNEL assay, was significantly increased in the presence of inflammation. Regardless of the presence or absence of inflammation, the small bile ducts in PBC liver tissue exhibited greater evidence of apoptosis than did similar ducts from PSC or control livers.
These findings suggest that in PBC, unlike PSC, the apoptosis of BEC in PBC is secondary to the invasion of inflammatory cells.

0 Followers
 · 
76 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Primary biliary cirrhosis (PBC) is an autoimmune liver disease characterized by selective destruction of intrahepatic cholangiocytes. Mechanisms underlying the development and progression of the disease are still controversial and largely undefined. Evidence suggests that PBC results from an articulated immunologic response against an immunodominant mitochondrial autoantigen, the E2 component of the pyruvate dehydrogenase complex (PDC-E2); characteristics of the disease are also the presence of disease-specific antimitochondrial autoantibodies (AMAs) and autoreactive CD4 and CD8 T cells. Recent evidence suggests that cholangiocytes show specific immunobiological features that are responsible for the selective targeting of those cells by the immune system. The immune reaction in PBC selectively targets small sized, intrahepatic bile ducts; although a specific reason for that has not been defined yet, it has been established that the biliary epithelium displays a unique heterogeneity, for which the physiological and pathophysiological features of small and large cholangiocytes significantly differ. In this review article, the authors provide a critical overview of the current evidence on the role of cholangiocytes in the immune-mediated destruction of the biliary tree that characterizes PBC.
    Seminars in Liver Disease 08/2014; 34(3):273-284. DOI:10.1055/s-0034-1383727 · 5.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Apoptosis is the predominant mechanism of liver cell death in autoimmune hepatitis, and interventions that can modulate this activity are emerging. The aim of this review was to describe the apoptotic mechanisms, possible aberrations, and opportunities for intervention in autoimmune hepatitis. Studies cited in PubMed from 1972 to 2014 for autoimmune hepatitis, apoptosis in liver disease, apoptosis mechanisms, and apoptosis treatment were examined. Apoptosis is overactive in autoimmune hepatitis, and the principal pathway of cell death is receptor mediated. Surface death receptors are activated by extrinsic factors including liver-infiltrating cytotoxic T cells and the cytokine milieu. The executioner caspases 3 and 7 cleave nuclear deoxyribonucleic acid, and the release of apoptotic bodies can stimulate inflammatory, immune, and fibrotic responses. Changes in mitochondrial membrane permeability can be initiated by caspase 8, and an intrinsic pathway of apoptosis can complement the extrinsic pathway. Defects in the apoptosis of activated effector cells can prolong their survival and sustain the immune response. Caspase inhibitors have been used in diverse experimental and human diseases to retard apoptosis. Oligonucleotides that inhibit the signaling of toll-like receptors can limit the presentation of auto-antigens, and inhibitors of apoptosis that extend the survival of effector cells can be blocked by antisense oligonucleotides. Mechanisms that enhance the clearance of apoptotic bodies and affect key signaling pathways are also feasible. Interventions that influence the survival of liver and effector cells by altering their apoptosis are candidates for study in autoimmune hepatitis.
    Digestive Diseases and Sciences 07/2014; 59(12). DOI:10.1007/s10620-014-3284-2 · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Primary biliary cirrhosis (PBC) would develop when the immune system comes across a microorganism with proteins similar to those in the piruvate dehydrogenase complex E2 (PDC-E2), or a neoantigen resulting from a xenobiotic-modified autoantigen. This would lead to an innate immune response where TLRs would play a pivotal mediating role, which would give rise to a local microenvironment favoring an adaptive immune response. Such response would be particularly strong in individuals with selected genetic characteristics. The genetic characteristics underlying this predisposition remain unknown, but they likely entail small numbers of scarcely-active regulatory T cells. The AE2 anion exchanger, which is deficient in patients with PBC, may reduce the number and activity of regulatory T cells. NK cells are also pivotal in the preparation of an adaptive response, as they release a number of cytokines and chemokines that favor and recruit antigen-presenting cells to activate B and T cells - CD4+ Th1 and CD8+. An activation of the former would increase the production of IgM and anti-mitochondrial IgG and IgA antibodies against PDC-E2. An activation of CD8+ cells, also sensitive to PDC-2 as aberrantly expressed on the surface of BECs and SECs, would result in apoptosis for these epithelial cells, and in small bile-duct destruction. Immune response is likely inadequately suppressed because of the small numbers of scarcely-active regulatory T cells, the latter resulting from low genetic expression and activity of the AE2 transporter.
    Revista espanola de enfermedades digestivas: organo oficial de la Sociedad Espanola de Patologia Digestiva 06/2009; 101(6):413-423. · 1.32 Impact Factor