Article

A numerical study of blood flow in coronary artery bypass graft side-to-side anastomoses.

Department of Mechanical and Industrial Engineering, University of Toronto, Ontario, Canada.
Annals of Biomedical Engineering 06/2002; 30(5):599-611. DOI: 10.1114/1.1481052
Source: PubMed

ABSTRACT When sequential grafts are used in multivessel coronary artery bypass grafting, the graft first supplies blood to one or more coronary arteries via a side-to-side anastomosis. We studied hemodynamics in idealized models of "parallel" and "diamond" side-to-side anastomoses, identifying features that might promote restenosis.
Blood flow was computed in three representative anastomosis configurations: parallel side-to-side, diamond side-to-side, and end-to-side. We compared configurations and the effect of host-graft diameter ratio.
Hemodynamic patterns depended strongly on anastomosis geometry and graft/host diameter ratio. In the distal graft, the diamond configuration had large areas of low wall shear stress (WSS) and high spatial WSS gradients. In the proximal graft the unfavorable WSS patterns were comparable for all models, while the distal portion of the host artery the diamond model was best. Models with smaller host arteries had smaller regions of low WSS.
The parallel configuration was preferred over the diamond for maintaining graft patency, while the diamond configuration appeared best for maintaining host artery patency. Since graft patency is critical, parallel configurations seem hemodynamically advantageous. Larger graft/host ratios have better hemodynamic performance than smaller ones.

0 Bookmarks
 · 
56 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Considering the fact that hemodynamics plays an important role in the patency and overall performance of implanted bypass grafts, this work presents a numerical investigation of pulsatile non-Newtonian blood flow in three different patient-specific aorto-coronary bypasses. The three bypass models are distinguished from each other by the number of distal side-to-side and end-to-side anastomoses and denoted as single, double and triple bypasses. The mathematical model in the form of time-dependent nonlinear system of incompressible Navier-Stokes equations is coupled with the Carreau-Yasuda model describing the shear-thinning property of human blood and numerically solved using the principle of the SIMPLE algorithm and cell-centred finite volume method formulated for hybrid unstructured tetrahedral grids. The numerical results computed for non-Newtonian and Newtonian blood flow in the three aorto-coronary bypasses are compared and analysed with emphasis placed on the distribution of cycle-averaged wall shear stress and oscillatory shear index. As shown in this study, the non-Newtonian blood flow in all of the considered bypass models does not significantly differ from the Newtonian one. Our observations further suggest that, especially in the case of sequential grafts, the resulting flow field and shear stimulation are strongly influenced by the diameter of the vessels involved in the bypassing. Copyright © 2013 John Wiley & Sons, Ltd.
    International Journal for Numerical Methods in Biomedical Engineering 10/2013; 29(10):1057-1081. · 1.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background and Aim End-to-side anastomoses to connect the distal end of the great saphenous vein (GSV) to small target coronary arteries are commonly performed in sequential coronary artery bypass grafting (CABG). However, the oversize diameter ratio between the GSV and small target vessels at end-to-side anastomoses might induce adverse hemodynamic condition. The purpose of this study was to describe a distal end side-to-side anastomosis technique and retrospectively compare the effect of distal end side-to-side versus end-to-side anastomosis on graft flow characteristics. Methods We performed side-to-side anastomoses to connect the distal end of the GSV to small target vessels on 30 patients undergoing off-pump sequential CABG in our hospital between October 2012 and July 2013. Among the 30 patients, end-to-side anastomoses at the distal end of the GSV were initially performed on 14 patients; however, due to poor graft flow, those anastomoses were revised into side-to-side anastomoses. We retrospectively compared the intraoperative graft flow characteristics of the end-to-side versus side-to-side anastomoses in the 14 patients. The patient outcomes were also evaluated. Results We found that the side-to-side anastomosis reconstruction improved intraoperative flow and reduced pulsatility index in all the 14 patients significantly. The 16 patients who had the distal end side-to-side anastomoses performed directly also exhibited satisfactory intraoperative graft flow. Three-month postoperative outcomes for all the patients were satisfactory. Conclusions Side-to-side anastomosis at the distal end of sequential vein grafts might be a promising strategy to connect small target coronary arteries to the GSV.
    BMC Cardiovascular Disorders 05/2014; 14(1):65. · 1.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, coronary arterial bypass grafting hemodynamics and anastomosis designs are reviewed. The paper specifically addresses the biomechanical factors for enhancement of the patency of coronary artery bypass grafts (CABGs). Stenosis of distal anastomosis, caused by thrombosis and intimal hyperplasia (IH), is the major cause of failure of CABGs. Strong correlations have been established between the hemodynamics and vessel wall biomechanical factors and the initiation and development of IH and thrombus formation. Accordingly, several investigations have been conducted and numerous anastomotic geometries and devices have been designed to better regulate the blood flow fields and distribution of hemodynamic parameters and biomechanical factors at the distal anastomosis, in order to enhance the patency of CABGs. Enhancement of longevity and patency rate of CABGs can eliminate the need for re-operation and can significantly lower morbidity, and thereby reduces medical costs for patients suffering from coronary stenosis. This invited review focuses on various endeavors made thus far to design a patency-enhancing optimized anastomotic configuration for the distal junction of CABGs.
    BioMedical Engineering OnLine 12/2013; 12(1):129. · 1.61 Impact Factor