Article

Purification and characterization of the plasma membrane glycosidases of Drosophila melanogaster spermatozoa.

Department of General Physiology and Biochemistry, University of Milano, Via Celoria 26, 20133 Milano, Italy.
Insect Biochemistry and Molecular Biology (Impact Factor: 3.42). 09/2002; 32(8):929-41. DOI: 10.1016/S0965-1748(02)00031-0
Source: PubMed

ABSTRACT Previous studies from our laboratory have demonstrated the presence of two integral proteins with glycosidase activity in the plasma membrane of Drosophila melanogaster spermatozoa and we have suggested that these enzymes might have a role in sperm-egg binding. In this study the glycosidases have been purified and characterized. We have evidenced the presence of three distinct enzymes, two beta-N-acetylhexosaminidase isoforms, named HEX 1 and HEX 2, and an alpha-mannosidase. The molecular size of the native enzymes estimated by gel filtration was 158 kDa for beta-hexosaminidases and 317 kDa for alpha-mannosidase. SDS-PAGE showed that HEX 1 and HEX 2 are dimers formed by subunits with different molecular sizes, whereas alpha-mannosidase consists of three subunits with different molecular weights. All the enzymes are terminally glycosylated. Characterization of the purified enzymes included their 4-methylumbelliferyl-substrate preferences, kinetic properties, inhibitor constants and thermal stability. On the basis of substrate specificity, kinetics and the results of inhibition studies, beta-hexosaminidases appear to differ from each other. HEX 1 and HEX 2 are similar to mammalian isoenzyme A and isoenzyme B, respectively. These findings represent the first report on the characterization of sperm proteins that are potentially involved in interactions with the egg in Insects.

0 Bookmarks
 · 
62 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: β-N-acetylglucosaminidase (GlcNAcase) is a key enzyme in the chitin decomposition process. In this study, we investigated the gene expression profile of GlcNAcases and the regulation mechanism for one of these genes, BmGlcNAcase1, in the silkworm. We performed sequence analysis of GlcNAcase. Using dual-spike-in qPCR method, we examined the expression of Bombyx β-N-acetylglucosaminidases (BmGlcNAcases) in various tissues of silkworm as well as expression changes after stimulation with ecdysone. Using Bac-to-Bac system and luciferase reporter vectors, we further analyzed the promoter sequence of BmGlcNAcase1. The results showed that these proteins have a highly conserved catalytic domain. The expression levels of the BmGlcNAcase genes varied in different tissues, and were increased 48 h after exposure to ecdysone. BmGlcNAcase1 gene promoter with 5'-end serial deletions showed different levels of activity in various tissues, higher in the blood, skin and fat body. Deletion of the region from -347 to -223 upstream of BmGlcNAcase-1 gene abolished its promoter activity. This region contains the binding sites for key transcription factors including Hb, BR-C Z, the HSF and the typical TATA-box element. These results indicate that BmGlcNAcases are expressed at different levels in different tissues of the silkworm, but all are subjected to the regulation by ecdysone. BmGlcNAcase1 promoter analysis has paved a foundation for further study of the gene expression patterns.
    Molecular Biology Reports 07/2014; · 1.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As newly synthesized glycoproteins move through the secretory pathway, the asparagine-linked glycan (N-glycan) undergoes extensive modifications involving the sequential removal and addition of sugar residues. These modifications are critical for the proper assembly, quality control and transport of glycoproteins during biosynthesis. The importance of N-glycosylation is illustrated by a growing list of diseases that result from defects in the biosynthesis and processing of N-linked glycans. The major rhodopsin in Drosophila melanogaster photoreceptors, Rh1, is highly unique among glycoproteins, as the N-glycan appears to be completely removed during Rh1 biosynthesis and maturation. However, much of the deglycosylation pathway for Rh1 remains unknown. To elucidate the key steps in Rh1 deglycosylation in vivo, we characterized mutant alleles of four Drosophila glycosyl hydrolases, namely α-mannosidase-II (α-Man-II), α-mannosidase-IIb (α-Man-IIb), a β-N-acetylglucosaminidase called fused lobes (Fdl), and hexosaminidase 1 (Hexo1). We have demonstrated that these four enzymes play essential and unique roles in a highly coordinated pathway for oligosaccharide trimming during Rh1 biosynthesis. Our results reveal that α-Man-II and α-Man-IIb are not isozymes like their mammalian counterparts, but rather function at distinct stages in Rh1 maturation. Also of significance, our results indicate that Hexo1 has a biosynthetic role in N-glycan processing during Rh1 maturation. This is unexpected given that in humans, the hexosaminidases are typically lysosomal enzymes involved in N-glycan catabolism with no known roles in protein biosynthesis. Here, we present a genetic dissection of glycoprotein processing in Drosophila and unveil key steps in N-glycan trimming during Rh1 biosynthesis. Taken together, our results provide fundamental advances towards understanding the complex and highly regulated pathway of N-glycosylation in vivo and reveal novel insights into the functions of glycosyl hydrolases in the secretory pathway.
    PLoS Genetics 05/2014; 10(5):e1004349. · 8.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In insects, spermatozoa develop in the testes as clones of single spermatogonia covered by specialized somatic cyst cells (cc). Upon completion of spermatogenesis, spermatozoa are released to the vas deferens, while the cc remain in the testes and die. In the fruit fly Drosophila melanogaster, the released spermatozoa first reach the seminal vesicles (SV), the organ where post-testicular maturation begins. Here, we demonstrate the temporal (restricted to the evening and early night hours) accumulation of membranous vesicles containing proteins in the SV lumen of D. melanogaster. When SV vesicles were isolated from the semen and co-incubated with testis-derived spermatozoa in vitro, their contents bound to the spermatozoa along their tails. The proteins of the SV vesicles were then characterized using 2-D electrophoresis. We identified a prominent protein spot of around 45-47 kDa, which disappears from the SV vesicles in the night, i.e. shortly after they appear in the SV lumen. Sequencing of peptides derived from this spot by mass spectrometry revealed identity with three yolk proteins (YP1-3). This unexpected result was confirmed by western blotting, which demonstrated that SV vesicles contain proteins that are immunoreactive with an antibody against D. melanogaster YP1-3. The expression of all yp genes was shown to be a unique feature of testis tissues. Using RNA probes we found that their transcripts localize exclusively to the cc that cover fully developed spermatozoa in the distal part of each testis. Temporally, the expression of yp genes was found to be restricted to a short period during the day and is followed by the evening accumulation of YP proteins in the cc. Immunohistochemical staining confirmed that cc are the source of SV vesicles containing YPs that are released into the SV lumen. These vesicles interact with spermatozoa and as a result, YPs become extrinsic proteins of the sperm membrane. Thus, we describe for the first time the expression of yolk proteins in the male reproductive system of D. melanogaster under physiological conditions, and show that somatic cells of the testes are the source of these proteins.
    Insect biochemistry and molecular biology 02/2014; · 3.25 Impact Factor