Article

The impact of chromatin in human cancer: linking DNA methylation to gene silencing

Cancer Epigenetics Laboratory, Molecular Pathology Program, Centro Nacional de Investigaciones Oncologicas, 28029 Madrid, Spain.
Carcinogenesis (Impact Factor: 5.27). 08/2002; 23(7):1103-9. DOI: 10.1093/carcin/23.7.1103
Source: PubMed

ABSTRACT For decades, chromatin was considered to be an inert structure whose only role was the compacting and confining of DNA inside the eukaryotic nucleus. However, tremendous progress in this field over the last 10 years has dramatically elevated chromatin to a key position in the control of gene activity. Its role in mediating the transformation of a normal cell into a malignant state is particularly interesting. On one side of this story there is the discovery that aberrant methylation patterns in an increasing number of tumour suppressor and DNA repair genes determine carcinogenetic transformation; while on the other side, there is the existence of a series of methyl-DNA binding activities that recruit co-repressor complexes and modify the structure of the chromatin to produce a transcriptionally silenced state. Although this field has seen rapid progress in recent years, detailed mechanisms by which this machinery modifies chromatin structure to its appropriate state and the specific targeting of repressor complexes have yet to be resolved. In this review we present the models of how repressor complexes may modify chromatin structure and mediate silencing of tumour suppressor and DNA repair genes.

1 Bookmark
 · 
91 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA methylation mediates gene silencing primarily by inducing repressive chromatin architecture via a common theme of interaction involving methyl-CpG binding (MBD) proteins, histone modifying enzymes and chromatin remodelling complexes. Hence, targeted inhibition of MBD protein function is now considered a potential therapeutic alternative for thwarting DNA hypermethylation prompted neoplastic progress. We have analyzed the gene and protein expression level of the principal factors responsible for gene silencing, that is, DNMT and MBD proteins in MCF-7 and MDA-MB-231 breast cancer cell lines after treatment with various epigenetic drugs. Our study reveals that the epigenetic modulators affect the expression levels at both transcript and protein levels as well as encourage growth arrest and apoptosis in MCF-7 and MDA-MB-231 cells. AZA, TSA, SFN, and SAM inhibit cell growth in MCF-7 and MDA-MB-231 cell lines in a dose-dependent manner, that is, with increasing concentrations of drugs the cell viability gradually decreases. All the epigenetic modulators promote apoptotic cell death, as is evident form increased chromatin condensation which is a distinct characteristic of apoptotic cells. From FACS analysis, it is also clear that these drugs induce G2-M arrest and apoptosis in breast cancer cells. Further, transcript and protein level expression of MBDs and DNMTs is also affected - after treatment with epigenetic drugs; the level of transcripts/mRNA of MBDs and DNMTs has consistently increased in general. The increase in level of gene expression is substantiated at the protein level also where treated cells show higher expression of DNMT1, DNMT3A, DNMT3B, and MBD proteins in comparison to untreated cells. In case of tissue samples, the expression of different DNMTs is tissue stage-specific. DNMT1 exhibits significantly higher expression in the metastatic stage, whereas, DNMT3A and DNMT3B have higher expression in the primary stage in comparison to the metastatic samples. The epigenetic modulators AZA, TSA, SFN, and SAM may provide opportunities for cancer prevention by regulating the components of epigenetic gene-silencing machinery especially DNMTs and MBDs.
    Clinical Epigenetics 01/2014; 6(1):20. DOI:10.1186/1868-7083-6-20 · 6.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Modern toxicology investigates a wide array of both old and new health hazards. Priority setting is needed to select agents for research from the plethora of exposure circumstances. The changing societies and a growing fraction of the aged have to be taken into consideration. A precise exposure assessment is of importance for risk estimation and regulation. Toxicology contributes to the exploration of pathomechanisms to specify the exposure metrics for risk estimation. Combined effects of co-existing agents are not yet sufficiently understood. Animal experiments allow a separate administration of agents which can not be disentangled by epidemiological means, but their value is limited for low exposure levels in many of today’s settings. As an experimental science, toxicology has to keep pace with the rapidly growing knowledge about the language of the genome and the changing paradigms in cancer development. During the pioneer era of assembling a working draft of the human genome, toxicogenomics has been developed. Gene and pathway complexity have to be considered when investigating gene–environment interactions. For a best conduct of studies, modern toxicology needs a close liaison with many other disciplines like epidemiology and bioinformatics.
    Toxicology Letters 05/2004; DOI:10.1016/S0378-4274(04)00216-4 · 3.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present MethHC (http://MethHC.mbc.nctu.edu.tw), a database comprising a systematic integration of a large collection of DNA methylation data and mRNA/microRNA expression profiles in human cancer. DNA methylation is an important epigenetic regulator of gene transcription, and genes with high levels of DNA methylation in their promoter regions are transcriptionally silent. Increasing numbers of DNA methylation and mRNA/microRNA expression profiles are being published in different public repositories. These data can help researchers to identify epigenetic patterns that are important for carcinogenesis. MethHC integrates data such as DNA methylation, mRNA expression, DNA methylation of microRNA gene and microRNA expression to identify correlations between DNA methylation and mRNA/microRNA expression from TCGA (The Cancer Genome Atlas), which includes 18 human cancers in more than 6000 samples, 6548 microarrays and 12 567 RNA sequencing data.
    Nucleic Acids Research 11/2014; DOI:10.1093/nar/gku1151 · 8.81 Impact Factor

Preview

Download
1 Download