Xestospongin C empties the ER calcium store but does not inhibit InsP3-induced Ca2+ release in cultured dorsal root ganglia neurones.

School of Biological Sciences, The University of Manchester, 1.124 Stopford Building, Oxford Road, Manchester, UK.
Cell Calcium (Impact Factor: 4.21). 08/2002; 32(1):49-52. DOI: 10.1016/S0143-4160(02)00094-5
Source: PubMed

ABSTRACT The action of Xestospongin C (XeC) on calcium concentration in the cytosol ([Ca2+]i) and within the lumen of endoplasmic reticulum (ER) ([Ca2+]L) was studied using cultured dorsal root ganglia (DRG) neurones. Application of 2.5 microM of XeC triggered a slow [Ca2+]i transient as measured by Fura-2 video-imaging. The kinetics and amplitude of XeC-induced [Ca2+]i response was similar to that triggered by 1 microM thapsigargin (TG). The [Ca2+]L was monitored in cells loaded with low-affinity Ca2+ indicator Mag-Fura-2. The cytosolic portion of Mag-Fura-2 was removed by permeabilisation of the plasmalemma with saponin. Application of XeC to these permeabilised neurones resulted in a slow depletion of the ER Ca2+ store. XeC, however, failed to inhibit inositol 1,4,5-trisphosphate (InsP3)-induced [Ca2+]L responses. We conclude that XeC is a potent inhibitor of sarco(endo)plasmic reticulum calcium ATPase, and it cannot be regarded as a specific inhibitor of InsP3 receptors in cultured DRG neurones.

  • [Show abstract] [Hide abstract]
    ABSTRACT: 1,4,5-Inositol trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs) mediate release of Ca(2+) from internal stores in many neurons. The details of the spatial and temporal characteristics of these signals and their interactions in dendrites remain to be clarified. We found that localized Ca(2+) release events, with no associated change in membrane potential, occurred spontaneously in the dendrites of rat hippocampal CA1 pyramidal neurons. Their rate, but not their amplitude or time course, could be modulated by changes in membrane potential. Together, these results suggest that the spontaneous events are similar to RyR-dependent Ca(2+) "sparks" found in cardiac myocytes. In addition, we found that we could generate another kind of localized Ca(2+) release event by either a synaptic tetanus in the presence of 3-((R)-2-carboxypiperazine-4-yl)-propyl-1-phosphonic acid and CNQX or by uncaging IP3. These events had slower rise times and decay times than sparks and were more heterogeneous. These properties are similar to Ca(2+) "puffs" found in oocytes. These two localized signals interact. Low-intensity tetanic synaptic stimulation or uncaging of IP3 increased the decay time of spontaneous Ca(2+) events without changing their rise time or amplitude. Pharmacological experiments suggest that this event widening is attributable to a delayed IP3R-mediated release of Ca(2+) triggered by the synergistic action of IP3 and Ca(2+) released by RyRs. The actions of IP3 appear to be confined to the main apical dendrite because uncaging IP3 in the oblique dendrites has no effect on the time course of localized events or backpropagating action potential-evoked Ca(2+) signals in this region.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 11/2013; 33(45):17777-88. DOI:10.1523/JNEUROSCI.2735-13.2013 · 6.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Persistent inflammation results in an increase in the magnitude and duration of high K(+)-evoked Ca(2+) transients in putative nociceptive cutaneous dorsal root ganglion (DRG) neurons. The purpose of the present study was to determine whether recruitment of Ca(2+)-induced Ca(2+) release (CICR) contributes to these inflammation-induced changes. Acutely dissociated, retrogradely labeled cutaneous DRG neurons from naïve and complete Freund's adjuvant inflamed adult male Sprague-Dawley rats were studied with ratiometric microfluorimetry. Ryanodine only attenuated the duration but not magnitude of the high K(+)-evoked Ca(2+) transient in neurons from inflamed rats. However, there was no significant impact of inflammation on the potency or efficacy of ryanodine-induced block of the caffeine-evoked Ca(2+) transient, or the impact of sarco-endoplasmic reticulum ATPase (SERCA) inhibition on the high K(+)-evoked Ca(2+) transient. Furthermore, while there was no change in the magnitude, an inflammation-induced increase in the duration of the caffeine-evoked Ca(2+) transient was only observed with a prolonged caffeine application. In contrast to the high K(+)-evoked Ca(2+) transient, there was no evidence of direct mitochondrial involvement or that of the Ca(2+) extrusion mechanism, the Na(+)/Ca(2+) exchanger, on the caffeine-evoked Ca(2+) transient, and block of SERCA only increased the duration of this transient. These results indicate the presence of Ca(2+) regulatory domains in cutaneous nociceptive DRG neurons within which cytosolic Ca(2+) increased via influx and release are highly segregated. Furthermore, our results suggest that changes in neither CICR machinery nor the coupling between Ca(2+) influx and CICR are primarily responsible for the inflammation-induced changes in the evoked Ca(2+) transient.
    Cell calcium 05/2013; DOI:10.1016/j.ceca.2013.04.002 · 4.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background and PurposeInositol 1,4,5-trisphosphate receptors (IP3Rs) are intracellular Ca2+ channels. Interactions of the commonly used antagonists of IP3Rs with IP3R subtypes are poorly understood.Experimental ApproachIP3-evoked Ca2+ release from permeabilized DT40 cells stably expressing single subtypes of mammalian IP3R was measured using a luminal Ca2+ indicator. The effects of commonly used antagonists on IP3-evoked Ca2+ release and 3H-IP3 binding were characterized.Key ResultsFunctional analyses showed that heparin was a competitive antagonist of all IP3R subtypes with different affinities for each (IP3R3>IP3R1≥IP3R2). This sequence did not match the affinities for heparin binding to the isolated N-terminal from each IP3R subtype. 2-aminoethoxydiphenyl borate (2-APB) and high concentrations of caffeine selectively inhibited IP3R1 without affecting IP3 binding. Neither Xestospongin C nor Xestospongin D effectively inhibited IP3-evoked Ca2+ release via any IP3R subtype.Conclusions and ImplicationsHeparin competes with IP3, but its access to the IP3-binding core is substantially hindered by additional IP3R residues. These interactions may contribute to its modest selectivity for IP3R3. Practicable concentrations of caffeine and 2-APB inhibit only IP3R1. Xestospongins do not appear to be effective antagonists of IP3Rs.
    British Journal of Pharmacology 03/2014; 171(13). DOI:10.1111/bph.12685 · 4.99 Impact Factor


Available from
May 15, 2014