Paramedic-performed rapid sequence intubation of patients with severe head injuries.

San Diego County Emergency Medical Service, CA, USA.
Annals of Emergency Medicine (Impact Factor: 4.29). 09/2002; 40(2):159-67. DOI: 10.1067/mem.2002.126397
Source: PubMed

ABSTRACT We evaluate the ability of paramedic rapid sequence intubation (RSI) to facilitate intubation of patients with severe head injuries in an urban out-of-hospital system.
Adult patients with head injuries were prospectively enrolled over a 1-year period by using the following inclusion criteria: Glasgow Coma Scale score of 3 to 8, transport time of greater than 10 minutes, and inability to intubate without RSI. Midazolam and succinylcholine were administered before laryngoscopy, and rocuronium was given after tube placement was confirmed by means of capnometry, syringe aspiration, and pulse oximetry. The Combitube was used as a salvage airway device. Outcome measures included intubation success rates, preintubation and postintubation oxygen saturation values, arrival arterial blood gas values, and total out-of-hospital times for patients intubated en route versus on scene.
Of 114 enrolled patients, 96 (84.2%) underwent successful endotracheal intubation, and 17 (14.9%) underwent Combitube intubation, with only 1 (0.9%) airway failure. There were no unrecognized esophageal intubations. On arrival at the trauma center, median oxygen saturation was 99%, mean arrival PO2 was 307 mm Hg, and mean arrival PCO2 was 35.8 mm Hg. Total out-of-hospital times were higher when RSI was performed on scene (26 versus 13 minutes).
Paramedics can use RSI protocols that include neuromuscular blocking and sedative agents to facilitate intubation of patients with head injuries.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pre-hospital airway management is a controversial subject, but there is general agreement that a small number of seriously ill or injured patients require urgent emergency tracheal intubation (ETI) and ventilation. Many European emergency medical services (EMS) systems provide physicians to care for these patients while other systems rely on paramedics (or, rarely, nurses). The ETI success rate is an important measure of provider and EMS system success and a marker of patient safety. We conducted a systematic search of Medline and EMBASE to identify all of the published original English-language articles reporting pre-hospital ETI in adult patients. We selected all of the studies that reported ETI success rates and extracted information on the number of attempted and successful ETIs, type of provider, level of ETI training and the availability of drugs on scene. We calculated the overall success rate using meta-analysis and assessed the relationships between the ETI success rate and type of provider and between the ETI success rate and the types of drugs available on the scene. From 1,070 studies initially retrieved, we identified 58 original studies meeting the selection criteria. Sixty-four per cent of the non-physician-manned services and 54% of the physician-manned services reported ETI success rates but the success rate reporting was incomplete in three studies from non-physician-manned services. Median success rate was 0.905 (0.491, 1.000). In a weighted linear regression analysis, physicians as providers were significantly associated with increased success rates, 0.092 (P=0.0345). In the non-physician group, the use of drug-assisted intubation significantly increased the success rates. All physicians had access to traditional rapid sequence induction (RSI) and, comparing these to non-physicians using muscle paralytics or a traditional RSI, there still was a significant difference in success rate in favour of physicians, 0.991 and 0.955, respectively (P=0.047). This comprehensive meta-analysis suggests that physicians have significantly fewer pre-hospital ETI failures overall than non-physicians. This finding, which remains true when the non-physicians administer muscle paralytics or RSI, raises significant patient safety issues. In the absence of pre-hospital physicians, conducting basic or advanced airway techniques other than ETI should be strongly considered.
    Critical care (London, England) 02/2012; 16(1):R24. · 4.72 Impact Factor
  • ANZ Journal of Surgery 07/2012; 82(7-8):484-5. · 1.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Backgound. Prevention of hypoxia and thus secondary brain injury in traumatic brain injury (TBI) is critical. However there is controversy regarding the role of endotracheal intubation in the prehospital management of TBI.Objective. To describe the outcome of TBI with various airway management methods employed in the prehospital setting in the Cape Town Metropole. Methods. The study was a cohort descriptive observational analysis of 124 consecutively injured adult patients who were admitted for severe TBI (Glasgow Coma Score ≤8) to Groote Schuur and Tygerberg hospitals between 1 January 2009 and 31 August 2011. Patients were categorised by their method of airway management: rapid sequence intubation (RSI), sedation-assisted intubation, failed intubation, basic airway management, and intubated without drugs. Good outcomes were defined by a Glasgow Outcome Score of 4 - 5. Results. There was a statistically significant association between airway management and outcome (p=0.013). Patients who underwent basic airway management had a higher proportion of a good outcome (72.9%) than patients who were intubated in the prehospital setting. A good outcome was observed with 61.8% and 38.4% of patients who experienced sedation-assisted intubation and RSI, respectively. Patients intubated without drugs had the poorest outcome (88%), followed by rapid sequence intubation (61.5%) and by the sedation assisted group (38.2%). Conclusion. Prehospital intubation did not demonstrate improved outcomes over basic airway management in patients with severe TBI. A large prospective, randomised trial is warranted to yield some insight into how these airway interventions influence outcome in severe TBI.
    South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde 09/2013; 103(9):644-6. · 1.70 Impact Factor


Available from