Article

p21-activated kinase 1 interacts with and phosphorylates histone H3 in breast cancer cells.

The University of Texas MD Anderson Cancer Center, Houston 77030, USA.
EMBO Reports (Impact Factor: 7.86). 09/2002; 3(8):767-73. DOI: 10.1093/embo-reports/kvf157
Source: PubMed

ABSTRACT Stimulation of p21-activated kinase-1 (Pak1) signaling promotes motility, invasiveness, anchorage-independent growth and abnormal mitotic assembly in human breast cancer cells. Here, we provide new evidence that, before the onset of mitosis, activated Pak1 is specifically localized with the chromosomes during prophase and on the centrosomes in metaphase and moves to the contraction ring during cytokinesis. To identify mitosis-specific substrates of Pak1, we screened a synchronized G2-M expression library by using a glutathione transferase Pak1 solid-phase-based kinase reaction. This analysis identified histone H3 as a substrate of Pak1 both in vitro and in vivo, and it specifically interacted with Pak1 but not Pak2 or Pak3. Site-directed mutagenesis indicated that Pak1 phosphorylates histone H3 on Ser10. Expressions of the wild-type, or catalytically active, Pak1 caused it to appear at the poles corresponding to mitotic centrosomes in a variety of mammalian cells. Together, these results suggest for the first time that Pak1 interacts with and phosphorylates histone H3 and may thus influence the Pak1-histone H3 pathway, which in turn may influence mitotic events in breast cancer cells.

Download full-text

Full-text

Available from: Jonathan Chernoff, Jun 16, 2015
0 Followers
 · 
98 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Xenopus laevis Aurora-A is phosphorylated in vivo onto three amino acids: Ser53, Thr295 and Ser349. The activation of the kinase depends on its autophosphorylation on Thr295 within the T-loop. The phosphorylation of Ser53 by still unknown kinase(s) prevents its degradation. The present work focused on the regulation of Aurora-A function via Ser349 phosphorylation. Mutagenesis of Ser349 to alanine (S349A) had few impact in vitro on the capability of the kinase to autophosphorylate as well as on its activity. These data in addition to in gel kinase assays and site-specific proteolytic digestion experiments prove that Ser349 is clearly neither a primary autophosphorylation site, nor an autophosphorylation site depending on the priming phosphorylation of Thr295. Using specific antibodies, we also show that the phosphorylation of Aurora-A Ser349 is a physiological event during Xenopus oocyte maturation triggered by progesterone. A peak of phosphorylation paralleled the decrease of Aurora activity observed between meiosis I and II. In response to progesterone, X. laevis stage VI oocytes microinjected with the Aurora-A S349A mutant proceeded normally to germinal vesicle breakdown (GVBD), but degenerated rapidly soon after. Since phosphorylation of Ser349 is responsible for a decrease in kinase activity, our results suggest that a down-regulation of Aurora-A activity involving Ser349 phosphorylation is required in the process of maturation.
    Developmental Biology 06/2008; 317(2):523-30. DOI:10.1016/j.ydbio.2008.02.053 · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: P21-activated kinases (Paks), a family of serine/threonine kinases, are effectors of the Rho GTPases Cdc42 and Rac1. Mammalian Pak1 and Pak homologs in simple eukaryotes are implicated in controlling G(2)/M transition and/or mitosis. Another serine/threonine kinase, polo-like kinase 1 (Plk1), is an important regulator of mitotic events, such as centrosome maturation, mitotic entry, spindle formation, sister chromatid cohesion and cytokinesis. Plk1 phosphorylation is thought to be one of the critical regulatory events leading to these Plk1-mediated functions. We show here that Pak1 is required for cell proliferation, mitotic progression and Plk1 activity in HeLa cells. Gain or loss of Pak function directly impacted phosphorylation and activity of Plk1. Phosphorylation of Plk1 on Ser 49 is important for metaphase-associated events. Inhibition of Pak activity leads to delay in G(2)/M progression and abnormal spindle formation, mirroring some attributes of Plk1 deregulation. Our results reveal a role for Pak in regulating Plk1 activity and mitotic progression, and connect Pak to the complex protein interaction network enabling cell division.
    Oncogene 05/2008; 27(36):4900-8. DOI:10.1038/onc.2008.131 · 8.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During G2 phase of cell cycle, centrosomes function as a scaffold for activation of mitotic kinases. Aurora-A is first activated at late G2 phase at the centrosome, facilitates centrosome maturation, and induces activation of cyclin B-Cdk1 at the centrosome for mitotic entry. Although several molecules including HEF1 and PAK are implicated in centrosomal activation of Aurora-A, signaling pathways leading to Aurora-A activation at the centrosome, and hence mitotic commitment in vertebrate cells remains largely unknown. Here, we have used Clostridium difficile toxin B and examined the role of Rho GTPases in G2/M transition of HeLa cells. Inactivation of Rho GTPases by the toxin B treatment delayed by 2 h histone H3 phosphorylation, Cdk1/cyclin B activation, and Aurora-A activation. Furthermore, PAK activation at the centrosome that was already present before the toxin addition was significantly attenuated for 2 h by the addition of toxin B, and HEF1 accumulation at the centrosome that occurred in late G2 phase was also delayed. These results suggest that Rho GTPases function in G2/M transition of mammalian cells by mediating multiple signaling pathways converging to centrosomal activation of Aurora-A.
    Molecular Biology of the Cell 11/2007; 18(10):3752-63. DOI:10.1091/mbc.E07-03-0281 · 4.55 Impact Factor