Article

Axonal Protein Synthesis Provides a Mechanism for Localized Regulation at an Intermediate Target

Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
Cell (Impact Factor: 33.12). 08/2002; 110(2):223-35. DOI: 10.1016/S0092-8674(02)00813-9
Source: PubMed

ABSTRACT As axons grow past intermediate targets, they change their responsiveness to guidance cues. Local upregulation of receptor expression is involved, but the mechanisms for this are not clear. Here protein synthesis is traced within individual axons by introducing RNAs encoding visualizable reporters. Individual severed axons and growth cones can translate proteins and also export them to the cell surface. As axons reach the spinal cord midline, EphA2 is among the receptors upregulated on at least some distal axon segments. Midline reporter upregulation is recapitulated by part of the EphA2 mRNA 3' untranslated region, which is highly conserved and includes known translational control sequences. These results show axons contain all the machinery for protein translation and cell surface expression, and they reveal a potentially general and flexible RNA-based mechanism for regulation localized within a subregion of the axon.

0 Followers
 · 
120 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Localized protein synthesis is a mechanism by which morphologically polarized cells react in a spatially confined and temporally acute manner to changes in their environment. During the development of the nervous system intra-axonal protein synthesis is crucial for the establishment of neuronal connections. In contrast, mature axons have long been considered as translationally inactive but upon nerve injury or under neurodegenerative conditions specific subsets of mRNAs are recruited into axons and locally translated. Intra-axonally synthesized proteins can have pathogenic or restorative and regenerative functions, and thus targeting the axonal translatome might have therapeutic value, for example in the treatment of spinal cord injury or Alzheimer's disease. In the case of Alzheimer's disease the local synthesis of the stress response transcription factor activating transcription factor 4 mediates the long-range retrograde spread of pathology across the brain, and inhibition of local Atf4 translation downstream of the integrated stress response might interfere with this spread. Several molecular tools and approaches have been developed to target specifically the axonal translatome by either overexposing proteins locally in axons or, conversely, knocking down selectively axonally localized mRNAs. Many questions about axonal translation remain to be answered, especially with regard to the mechanisms establishing specificity but, nevertheless, targeting the axonal translatome is a promising novel avenue to pursue in the development for future therapies for various neurological conditions.
    Journal of the American Society for Experimental NeuroTherapeutics 11/2014; 12(1). DOI:10.1007/s13311-014-0308-8 · 3.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Local protein synthesis (LPS) via receptor-mediated signaling plays a role in the directional responses of axons to extrinsic cues. An intact cytoskeleton is critical to enact these responses, but it is not known whether the two major cytoskeletal elements, F-actin and microtubules, have any roles in regulating axonal protein synthesis. Results Here, we show that pharmacological disruption of either microtubules or actin filaments in growth cones blocks netrin-1-induced de novo synthesis of proteins, as measured by metabolic incorporation of labeled amino acids, implicating both elements in axonal synthesis. However, comparative analysis of the activated translation initiation regulator, eIF4E-BP1, revealed a striking difference in the point of action of the two elements: actin disruption completely inhibited netrin-1-induced eIF4E-BP1 phosphorylation while microtubule disruption had no effect. An intact F-actin, but not microtubule, cytoskeleton was also required for netrin-1-induced activation of the PI3K/Akt/mTOR pathway, upstream of translation initiation. Downstream of translation initiation, microtubules were required for netrin-1-induced activation of eukaryotic elongation factor 2 kinase (eEF2K) and eEF2. Conclusions Taken together, our results show that while actin and microtubules are both crucial for cue-induced axonal protein synthesis, they serve distinct roles with F-actin being required for the initiation of translation and microtubules acting later at the elongation step. Electronic supplementary material The online version of this article (doi:10.1186/s13064-015-0031-0) contains supplementary material, which is available to authorized users.
    Neural Development 02/2015; 10. DOI:10.1186/s13064-015-0031-0 · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Signaling classically involves the secretion of diverse molecules that bind specific cell-surface receptors and engage intracellular transduction cascades. Some exceptions-namely, lipophilic agents-can cross plasma membranes to bind intracellular receptors and be carried to the nucleus to regulate transcription. Homeoprotein transcription factors are among the few proteins with such a capacity. Here, we review the signaling activities of homeoproteins in the developing and adult nervous system, with particular emphasis on axon/cell migration and postnatal critical periods of cerebral cortex plasticity. We also describe homeoprotein non-cell-autonomous mechanisms and explore how this "novel" signaling pathway impacts emerging research in brain development and physiology. In this context, we explore hypotheses on the evolution of signaling, the role of homeoproteins as early morphogens, and their therapeutic potential for neurological and psychiatric diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
    Neuron 03/2015; 85(5):911-925. DOI:10.1016/j.neuron.2015.01.019 · 15.98 Impact Factor

Full-text (2 Sources)

Download
65 Downloads
Available from
May 29, 2014